
FabImage Studio 5.3

Machine Vision Guide

Created: 7/20/2023

Product version: 5.3.4.94467

fab-image.com

Table of content:

Image Processing

Blob Analysis

1D Edge Detection

1D Edge Detection – Subpixel Precision

Shape Fitting

Template Matching

Using Local Coordinate Systems

Camera Calibration and World Coordinates

Golden Template

https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdToRegion.html
https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdToRegion_Dynamic.html
https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdToRegion_Relative.html
https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdToRegion_RGB.html
https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdToRegion_HSx.html
https://docs.fab-image.com/5.3/studio/filters/RegionMorphology/DilateRegion.html
https://docs.fab-image.com/5.3/studio/filters/RegionMorphology/ErodeRegion.html
https://docs.fab-image.com/5.3/studio/filters/RegionMorphology/CloseRegion.html
https://docs.fab-image.com/5.3/studio/filters/RegionMorphology/OpenRegion.html
https://docs.fab-image.com/5.3/studio/filters/RegionFeatures/RegionArea.html
https://docs.fab-image.com/5.3/studio/filters/RegionFeatures/RegionCircularity.html
https://docs.fab-image.com/5.3/studio/filters/RegionFeatures/RegionConvexity.html
https://docs.fab-image.com/5.3/studio/filters/RegionFeatures/RegionRectangularity.html
https://docs.fab-image.com/5.3/studio/filters/RegionFeatures/RegionElongation.html
https://docs.fab-image.com/5.3/studio/filters/RegionFeatures/RegionMoment.html
https://docs.fab-image.com/5.3/studio/filters/RegionFeatures/RegionNumberOfHoles.html
https://docs.fab-image.com/5.3/studio/filters/RegionFeatures/RegionOrientation.html
https://docs.fab-image.com/5.3/studio/filters/RegionFeatures/RegionPerimeterLength.html
https://docs.fab-image.com/5.3/studio/filters/RegionFeatures/RegionBoundingBox.html
https://docs.fab-image.com/5.3/studio/filters/RegionFeatures/RegionBoundingCircle.html
https://docs.fab-image.com/5.3/studio/filters/RegionFeatures/RegionBoundingRectangle.html
https://docs.fab-image.com/5.3/studio/filters/RegionFeatures/RegionContours.html
https://docs.fab-image.com/5.3/studio/filters/RegionFeatures/RegionDiameter.html
https://docs.fab-image.com/5.3/studio/filters/RegionFeatures/RegionHoles.html
https://docs.fab-image.com/5.3/studio/filters/RegionFeatures/RegionMedialAxis.html
https://docs.fab-image.com/5.3/studio/filters/1DEdgeDetection/ScanSingleEdge.html
https://docs.fab-image.com/5.3/studio/filters/1DEdgeDetection/ScanMultipleEdges.html
https://docs.fab-image.com/5.3/studio/filters/1DEdgeDetection/ScanExactlyNEdges.html
https://docs.fab-image.com/5.3/studio/filters/1DEdgeDetection/ScanSingleStripe.html
https://docs.fab-image.com/5.3/studio/filters/1DEdgeDetection/ScanMultipleStripes.html
https://docs.fab-image.com/5.3/studio/filters/1DEdgeDetection/ScanExactlyNStripes.html
https://docs.fab-image.com/5.3/studio/filters/1DEdgeDetection/ScanSingleRidge.html
https://docs.fab-image.com/5.3/studio/filters/1DEdgeDetection/ScanMultipleRidges.html
https://docs.fab-image.com/5.3/studio/filters/1DEdgeDetection/ScanExactlyNRidges.html
https://docs.fab-image.com/5.3/studio/filters/ShapeFitting/FitCircleToStripe.html
https://docs.fab-image.com/5.3/studio/filters/ShapeFitting/FitPathToEdges.html
https://docs.fab-image.com/5.3/studio/filters/TemplateMatching/CreateGrayModel.html
https://docs.fab-image.com/5.3/studio/filters/TemplateMatching/CreateEdgeModel2.html
https://docs.fab-image.com/5.3/studio/filters/TemplateMatching/LocateMultipleObjects_NCC.html
https://docs.fab-image.com/5.3/studio/filters/TemplateMatching/LocateMultipleObjects_Edges2.html
https://docs.fab-image.com/5.3/studio/filters/OpticalCharacterRecognition/RecognizeCharacters.html
https://docs.fab-image.com/5.3/studio/filters/OpticalCharacterRecognition/TrainOcr_MLP.html
https://docs.fab-image.com/5.3/studio/filters/OpticalCharacterRecognition/TrainOcr_SVM.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectAnomalies1_Deploy.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectAnomalies1.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectAnomalies2_Deploy.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectAnomalies2.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectFeatures_Deploy.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectFeatures.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_ClassifyObject_Deploy.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_ClassifyObject.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_SegmentInstances_Deploy.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_SegmentInstances.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_LocatePoints_Deploy.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_LocatePoints.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_LocateObjects_Deploy.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_LocateObjects.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_ReadCharacters_Deploy.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_ReadCharacters.html
https://www.fab-image.com

Image Processing

Introduction

There are two major goals of Image Processing techniques:

1. To enhance an image for better human perception

2. To make the information it contains more salient or easier to extract

It should be kept in mind that in the context of computer vision only the second point is important. Preparing images for human perception is not part

of computer vision; it is only part of information visualization. In typical machine vision applications this comes only at the end of the program and

usually does not pose any problem.

The first and the most important advice for machine vision engineers is: avoid image transformations designed for human perception when
the goal is to extract information. Most notable examples of transformations that are not only not interesting, but can even be highly disruptive, are:

JPEG compression (creates artifacts not visible by human eye, but disruptive for algorithms)

CIE Lab and CIE XYZ color spaces (specifically designed for human perception)

Edge enhancement filters (which improve only the "apparent sharpness")

Image thresholding performed before edge detection (precludes sub-pixel precision)

Examples of image processing operations that can really improve information extraction are:

Gaussian image smoothing (removes noise, while preserving information about local features)

Image morphology (can remove unwanted details)

Gradient and high-pass filters (highlight information about object contours)

Basic color space transformations like HSV (separate information about chromaticity and brightness)

Pixel-by-pixel image composition (e.g. can highlight image differences in relation to a reference image)

Regions of Interest

The image processing tools provided by FabImage have a special inRoi input (of Region type), that can limit the spatial scope of the operation. The

region can be of any shape.

Remarks:

The output image will be black outside of the inRoi region.

To obtain an image that has its pixels modified in inRoi and copied outside of it, one can use the ComposeImages filter.

The default value for inRoi is Auto and causes the entire image to be processed.

Although inRoi can be used to significantly speed up processing, it should be used with care. The performance gain may be far from
proportional to the inRoi area, especially in comparison to processing the entire image (Auto). This is due to the fact, that in many cases more
SSE optimizations are possible when inRoi is not used.

Some filters have a second region of interest called inSourceRoi. While inRoi defines the range of pixels that will be written in the output image, the

inSourceRoi parameter defines the range of pixels that can be read from the input image.

Image Boundary Processing

Some image processing filters, especially those from the Image Local Transforms category, use information from some local neighborhood of a

pixel. This causes a problem near the image borders as not all input data is available. The policy applied in our tools is:

Never assume any specific value outside of the image, unless specifically defined by the user.

If only partial information is available, it is better not to detect anything, than detect something that does not exist.

In particular, the filters that use information from a local neighborhood just use smaller (cropped) neighbourhood near the image borders. This is

something, however, that has to be taken into account, when relying on the results – for example results of the smoothing filters can be up to 2 times

less smooth at the image borders (due to half of the neighborhood size), whereas results of the morphological filters may "stick" to the image

borders. If the highest reliability is required, the general rule is: use appropriate regions of interest to ignore image processing results that
come from incomplete information (near the image borders).

Toolset

An input image and the inRoi. Result of an operation performed within inRoi.

https://docs.fab-image.com/5.3/studio/datatypes/Region.html
https://docs.fab-image.com/5.3/studio/filters/ImageCombinators/ComposeImages.html
https://docs.fab-image.com/5.3/studio/filters/ImageLocalTransforms/index.html

Image Combinators

The filters from the Image Combinators category take two images and perform a pixel-by-pixel transformation into a single image. This can be used

for example to highlight differences between images or to normalize brightness – as in the example below:

Image Smoothing

The main purpose of the image smoothing filters (located in the Image Local Transforms category) is removal of noise. There are several different

ways to perform this task with different trade-offs. On the example below three methods are presented:

1. Mean smoothing – simply takes the average pixel value from a rectangular neighborhood; it is the fastest method.

2. Median smoothing – simply takes the median pixel value from a rectangular neighborhood; preserves edges, but is relatively slow.

3. Gauss smoothing – computes a weighted average of the pixel values with Gaussian coefficients as the weights; its advantage is isotropy and
reasonable speed for small kernels.

Image Morphology

Basic morphological operators – DilateImage and ErodeImage – transform the input image by choosing maximum or minimum pixel values from a

local neighborhood. Other morphological operators combine these two basic operations to perform more complex tasks. Here is an example of

using the OpenImage filter to remove salt and pepper noise from an image:

Gradient Analysis

An image gradient is a vector describing direction and magnitude (strength) of local brightness changes. Gradients are used inside of many

computer vision tools – for example in object contour detection, edge-based template matching and in barcode and DataMatrix detection.

Available filters:

GradientImage – produces a 2-channel image of signed values; each pixel denotes a gradient vector.

GradientMagnitudeImage – produces a single channel image of gradient magnitudes, i.e. the lengths of the vectors (or their approximations).

GradientDirAndPresenceImage – produces a single channel image of gradient directions mapped into the range from 1 to 255; 0 means no
significant gradient.

Input image with high reflections. Image of the reflections (calibrating). The result of applying DivideImages with inScale = 128 (inRoi

was used).

Input image with some noise. Result of applying

SmoothImage_Mean.

Result of applying

SmoothImage_Gauss.

Result of applying

SmoothImage_Median.

Input image with salt-and-pepper noise. Result of applying OpenImage.

https://docs.fab-image.com/5.3/studio/filters/ImageCombinators/index.html
https://docs.fab-image.com/5.3/studio/filters/ImageCombinators/DivideImages.html
https://docs.fab-image.com/5.3/studio/filters/ImageLocalTransforms/index.html
https://docs.fab-image.com/5.3/studio/filters/ImageLocalTransforms/SmoothImage_Mean.html
https://docs.fab-image.com/5.3/studio/filters/ImageLocalTransforms/SmoothImage_Gauss.html
https://docs.fab-image.com/5.3/studio/filters/ImageLocalTransforms/SmoothImage_Median.html
https://docs.fab-image.com/5.3/studio/filters/ImageLocalTransforms/DilateImage.html
https://docs.fab-image.com/5.3/studio/filters/ImageLocalTransforms/ErodeImage.html
https://docs.fab-image.com/5.3/studio/filters/ImageLocalTransforms/OpenImage.html
https://docs.fab-image.com/5.3/studio/filters/ImageLocalTransforms/OpenImage.html
https://docs.fab-image.com/5.3/studio/filters/ImageLocalTransforms/GradientImage.html
https://docs.fab-image.com/5.3/studio/filters/ImageLocalTransforms/GradientMagnitudeImage.html
https://docs.fab-image.com/5.3/studio/filters/ImageLocalTransforms/GradientDirAndPresenceImage.html

Spatial Transforms

Spatial transforms modify an image by changing locations, but not values, of pixels. Here are sample results of some of the most basic operations:

There are also interesting spatial transform tools that allow to transform a two dimensional vision problem into a 1.5-dimensional one, which can be

very useful for further processing:

An input image and a path.

Result of ImageAlongPath.

Spatial Transform Maps

The spatial transform tools perform a task that consist of two steps for each pixel:

1. compute the destination coordinates (and some coefficients when interpolation is used),

2. copy the pixel value.

An input image. Result of GradientMagnitudeImage.

Result of GradientDirAndPresenceImage. Diagnostic output of GradientImage showing hue-coded directions.

Result of MirrorImage. Result of RotateImage. Result of ShearImage.
Result of DownsampleImage.

Result of

TransposeImage.

Result of TranslateImage. Result of CropImage. Result of UncropImage applied to the

result of CropImage.

https://docs.fab-image.com/5.3/studio/filters/ImageLocalTransforms/GradientMagnitudeImage.html
https://docs.fab-image.com/5.3/studio/filters/ImageLocalTransforms/GradientDirAndPresenceImage.html
https://docs.fab-image.com/5.3/studio/filters/ImageLocalTransforms/GradientImage.html
https://docs.fab-image.com/5.3/studio/filters/ImageSpatialTransforms/MirrorImage.html
https://docs.fab-image.com/5.3/studio/filters/ImageSpatialTransforms/RotateImage.html
https://docs.fab-image.com/5.3/studio/filters/ImageSpatialTransforms/ShearImage.html
https://docs.fab-image.com/5.3/studio/filters/ImageSpatialTransforms/DownsampleImage.html
https://docs.fab-image.com/5.3/studio/filters/ImageSpatialTransforms/TransposeImage.html
https://docs.fab-image.com/5.3/studio/filters/ImageSpatialTransforms/TranslateImage.html
https://docs.fab-image.com/5.3/studio/filters/ImageSpatialTransforms/CropImage.html
https://docs.fab-image.com/5.3/studio/filters/ImageSpatialTransforms/UncropImage.html
https://docs.fab-image.com/5.3/studio/filters/ImageSpatialTransforms/CropImage.html
https://docs.fab-image.com/5.3/studio/filters/ImageSpatialTransforms/ImageAlongPath.html

In many cases the transformation is constant – for example we might be rotating an image always by the same angle. In such cases the first step –

computing the coordinates and coefficients – can be done once, before the main loop of the program. FabImage provides the Image Spatial

Transforms Maps category of filters for exactly that purpose. When you are able to compute the transform beforehand, storing it in the SpatialMap

type, in the main loop only the RemapImage filter has to be executed. This approach will be much faster than using standard spatial transform tools.

The SpatialMap type is a map of image locations and their corresponding positions after given geometric transformation has been applied.

Additionally, the Image Spatial Transforms Maps category provides several filters that can be used to flatten the curvature of a physical object. They

can be used for e.g. reading labels glued onto curved surfaces. These filters model basic 3D objects:

1. Cylinder (CreateCylinderMap) – e.g. flattening of a bottle label.

2. Sphere (CreateSphereMap) – e.g. reading a label from light bulb.

3. Box (CreatePerspectiveMap_Points or CreatePerspectiveMap_Path) – e.g. reading a label from a box.

4. Circular objects (polar transform) (CreateImagePolarTransformMap) - e.g. reading a label wrapped around a DVD disk center.

Example of remapping of a spherical object using CreateSphereMap and RemapImage. Image before and after remapping.

Furthermore custom spatial maps can be created with ConvertMatrixMapsToSpatialMap.

An example of custom image transform created with ConvertMatrixMapsToSpatialMap. Image before and after remapping.

Image Thresholding

The task of Image Thresholding filters is to classify image pixel values as foreground (white) or background (black). The basic filters ThresholdImage

and ThresholdToRegion use just a simple range of pixel values – a pixel value is classified as foreground iff it belongs to the range. The

ThresholdImage filter just transforms an image into another image, whereas the ThresholdToRegion filter creates a region corresponding to the

foreground pixels. Other available filters allow more advanced classification:

ThresholdImage_Dynamic and ThresholdToRegion_Dynamic use average local brightness to compensate global illumination variations.

ThresholdImage_RGB and ThresholdToRegion_RGB select pixel values matching a range defined in the RGB (the standard) color space.

ThresholdImage_HSx and ThresholdToRegion_HSx select pixel values matching a range defined in the HSx color space.

ThresholdImage_Relative and ThresholdToRegion_Relative allow to use a different threshold value at each pixel location.

There is also an additional filter SelectThresholdValue which implements a number of methods for automatic threshold value selection. It should,

however, be used with much care, because there is no universal method that works in all cases and even a method that works well for a particular

case might fail in special cases.

Input image with uneven light. Result of ThresholdImage – the bars can not be

recognized.

Result of ThresholdImage_Dynamic – the bars

are correct.

https://docs.fab-image.com/5.3/studio/filters/ImageSpatialTransformsMaps/index.html
https://docs.fab-image.com/5.3/studio/datatypes/SpatialMap.html
https://docs.fab-image.com/5.3/studio/filters/ImageSpatialTransformsMaps/RemapImage.html
https://docs.fab-image.com/5.3/studio/datatypes/SpatialMap.html
https://docs.fab-image.com/5.3/studio/filters/ImageSpatialTransformsMaps/index.html
https://docs.fab-image.com/5.3/studio/filters/ImageSpatialTransformsMaps/CreateCylinderMap.html
https://docs.fab-image.com/5.3/studio/filters/ImageSpatialTransformsMaps/CreateSphereMap.html
https://docs.fab-image.com/5.3/studio/filters/ImageSpatialTransformsMaps/CreatePerspectiveMap_Points.html
https://docs.fab-image.com/5.3/studio/filters/ImageSpatialTransformsMaps/CreatePerspectiveMap_Path.html
https://docs.fab-image.com/5.3/studio/filters/ImageSpatialTransformsMaps/CreateImagePolarTransformMap.html
https://docs.fab-image.com/5.3/studio/filters/ImageSpatialTransformsMaps/CreateSphereMap.html
https://docs.fab-image.com/5.3/studio/filters/ImageSpatialTransformsMaps/RemapImage.html
https://docs.fab-image.com/5.3/studio/filters/ImageSpatialTransformsMaps/ConvertMatrixMapsToSpatialMap.html
https://docs.fab-image.com/5.3/studio/filters/ImageSpatialTransformsMaps/ConvertMatrixMapsToSpatialMap.html
https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/index.html
https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdImage.html
https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdToRegion.html
https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdImage.html
https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdToRegion.html
https://docs.fab-image.com/5.3/studio/datatypes/Region.html
https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdImage_Dynamic.html
https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdToRegion_Dynamic.html
https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdImage_RGB.html
https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdToRegion_RGB.html
https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdImage_HSx.html
https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdToRegion_HSx.html
https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdImage_Relative.html
https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdToRegion_Relative.html
https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdImage.html
https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdImage_Dynamic.html
https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/SelectThresholdValue.html

Image Pixel Analysis

When reliable object detection by color analysis is required, there are two filters that can be useful: ColorDistance and ColorDistanceImage. These

filters compare colors in the RGB space, but internally separate analysis of brightness and chromaticity. This separation is very important, because

in many cases variations in brightness are much higher than variations in chromaticity. Assigning more significance to the latter (high value of the

inChromaAmount input) allows to detect areas having the specified color even in presence of highly uneven illumination:

Image Features

Image Features is a category of image processing tools that are already very close to computer vision – they transform pixel information into simple

higher-level data structures. Most notable examples are: ImageLocalMaxima which finds the points at which the brightness is locally the highest,

ImageProjection which creates a profile from sums of pixel values in columns or in rows, ImageAverage which averages pixel values in the entire

region of interest. Here is an example application:

Input image with uneven light. Result of ColorDistanceImage for the red color with

inChromaAmount = 1.0. Dark areas correspond to low

color distance.

Result of thresholding reveals the

location of the red dots on the globe.

Input image with digits to be segmented. Result of preprocessing with CloseImage.

Digit locations extracted by applying SmoothImage_Gauss and

ImageLocalMaxima.

Profile of the vertical projection revealing regions of digits and the

boundaries between them.

https://docs.fab-image.com/5.3/studio/filters/ImageMetrics/ColorDistance.html
https://docs.fab-image.com/5.3/studio/filters/ImageMetrics/ColorDistanceImage.html
https://docs.fab-image.com/5.3/studio/filters/ImageMetrics/ColorDistanceImage.html
https://docs.fab-image.com/5.3/studio/filters/ImageFeatures/index.html
https://docs.fab-image.com/5.3/studio/filters/ImageFeatures/ImageLocalMaxima.html
https://docs.fab-image.com/5.3/studio/filters/ImageFeatures/ImageProjection.html
https://docs.fab-image.com/5.3/studio/filters/ImagePixelStatistics/ImageAverage.html
https://docs.fab-image.com/5.3/studio/filters/ImageLocalTransforms/CloseImage.html
https://docs.fab-image.com/5.3/studio/filters/ImageLocalTransforms/SmoothImage_Gauss.html
https://docs.fab-image.com/5.3/studio/filters/ImageFeatures/ImageLocalMaxima.html

Blob Analysis

Introduction

Blob Analysis is a fundamental technique of machine vision based on analysis of consistent image

regions. As such it is a tool of choice for applications in which the objects being inspected are clearly

discernible from the background. Diverse set of Blob Analysis methods allows to create tailored

solutions for a wide range of visual inspection problems.

Main advantages of this technique include high flexibility and excellent performance. Its limitations

are: clear background-foreground relation requirement (see Template Matching for an alternative)

and pixel-precision (see 1D Edge Detection for an alternative).

Concept

Let us begin by defining the notions of region and blob.

Region is any subset of image pixels. In FabImage Studio regions are represented using Region data type.

Blob is a connected region. In FabImage Studio blobs (being a special case of region) are represented using the same Region data type. They
can be obtained from any region using a single SplitRegionIntoBlobs filter or (less frequently) directly from an image using image segmentation
filters from category Image Analysis techniques.

The basic scenario of the Blob Analysis solution consists of the following steps:

1. Extraction - in the initial step one of the Image Thresholding techniques is applied to obtain a region corresponding to the objects (or single

object) being inspected.

2. Refinement - the extracted region is often flawed by noise of various kind (e.g. due to inconsistent lightning or poor image quality). In the

Refinement step the region is enhanced using region transformation techniques.

3. Analysis - in the final step the refined region is subject to measurements and the final results are computed. If the region represents multiple

objects, it is split into individual blobs each of which is inspected separately.

Examples

The following examples illustrate the general schema of Blob Analysis algorithms. Each of the techniques represented in the examples (thresholding,

morphology, calculation of region features, etc.) is inspected in detail in later sections.

An example image. Region of pixels darker than 128. Decomposition of the region into array of

blobs.

https://docs.fab-image.com/5.3/studio/machine_vision_guide/TemplateMatching.html
https://docs.fab-image.com/5.3/studio/machine_vision_guide/1DEdgeDetection.html
https://docs.fab-image.com/5.3/studio/datatypes/Region.html
https://docs.fab-image.com/5.3/studio/datatypes/Region.html
https://docs.fab-image.com/5.3/studio/filters/RegionGlobalTransforms/SplitRegionIntoBlobs.html
https://docs.fab-image.com/5.3/studio/filters/ImageAnalysis/index.html

Rubber Band

In this, idealized, example we analyze a picture of an electronic device wrapped in a

rubber band. The aim here is to compute the area of the visible part of the band (e.g.

to decide whether it was assembled correctly).

In this case each of the steps: Extraction, Refinement and Analysis is represented

by a single filter.

Extraction - to obtain a region corresponding to the red band a Color-based

Thresholding technique is applied. The ThresholdToRegion_HSx filter is capable of

finding the region of pixels of given color characteristics - in this case it is targeted to

detect red pixels.

Refinement - the problem of filling the gaps in the extracted region is a standard

one. Classic solutions for it are the region morphology techniques. Here, the

CloseRegion filter is used to fill the gaps.

Analysis - finally, a single RegionArea filter is used to compute the area of the

obtained region.

Initial image

Extraction

Refinement

Results

https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdToRegion_HSx.html
https://docs.fab-image.com/5.3/studio/filters/RegionMorphology/CloseRegion.html
https://docs.fab-image.com/5.3/studio/filters/RegionFeatures/RegionArea.html

Mounts

Extraction

There are two techniques that allow to extract regions from an image:

Image Thresholding - commonly used methods that compute a region as a set of pixels that meet certain condition dependent on the

specific operator (e.g. region of pixels brighter than given value, or brighter than the average brightness in their neighborhood). Note that the
resulting data is always a single region, possibly representing numerous objects.

Image Segmentation - more specialized set of methods that compute a set of blobs corresponding to areas in the image that meet certain

condition. The resulting data is always an array of connected regions (blobs).

Thresholding

Image Thresholding techniques are preferred for common applications (even those in which a set of objects is inspected rather than a single object)

because of their simplicity and excellent performance. In FabImage Studio there are six filters for image-to-region thresholding, each of them

implementing a different thresholding method.

Classic Thresholding

ThresholdToRegion simply selects the image pixels of the specified brightness. It should be considered a basic tool and applied whenever the

intensity of the inspected object is constant, consistent and clearly different from the intensity of the background.

In this example a picture of a set of mounts is inspected to identify the damaged

ones.

Extraction - as the lightning in the image is uniform, the objects are consistently

dark and the background is consistently bright, the extraction of the region

corresponding to the objects is a simple task. A basic ThresholdToRegion filter does

the job, and does it so well that no Refinement phase is needed in this example.

Analysis - as we need to analyze each of the blobs separately, we start by applying

the SplitRegionIntoBlobs filter to the extracted region.

To distinguish the bad parts from the correct parts we need to pick a property of a

region (e.g. area, circularity, etc.) that we expect to be high for the good parts and

low for the bad parts (or conversely). Here, the area would do, but we will pick a

somewhat more sophisticated rectangularity feature, which will compute the

similarity-to-rectangle factor for each of the blobs.

Once we have chosen the rectangularity feature of the blobs, all that needs to be

done is to feed the regions to be classified to the ClassifyRegions filter (and to set its

inMinimum value parameter). The blobs of too low rectangularity are available at the

outRejected output of the classifying filter.

Input image

Extraction

Analysis

Results

Brightness-
based
(basic)

Brightness-
based

(additional)

Color-
based

https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdToRegion.html
https://docs.fab-image.com/5.3/studio/filters/RegionGlobalTransforms/SplitRegionIntoBlobs.html
https://docs.fab-image.com/5.3/studio/filters/RegionRelations/ClassifyRegions.html
https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdToRegion.html

Dynamic Thresholding

Inconsistent brightness of the objects being inspected is a common problem usually caused by the imperfections of the lightning setup. As we can

see in the example below, it is often the case that the objects in one part of the image actually have the same brightness as the background in

another part of the image. In such case it is not possible to use the basic ThresholdToRegion filter and ThresholdToRegion_Dynamic should be

considered instead. The latter selects image pixels that are locally bright/dark. Specifically - the filter selects the image pixels of the given relative

local brightness defined as the difference between the pixel intensity and the average intensity in its neighborhood.

Color-based Thresholding

When inspection is conducted on color images it may be the case that despite a significant difference in color, the brightness of the objects is

actually the same as the brightness of their neighborhood. In such case it is advisable to use Color-based Thresholding filters:

ThresholdToRegion_RGB, ThresholdToRegion_HSx. The suffix denote the color space in which we define the desired pixel characteristic and not

the space used in the image representation. In other words - both of these filters can be used to process standard RGB color image.

Refinement

Region Morphology

Region Morphology is a classic technique of region transformation. The core concept of this toolset is the usage of a structuring element also known

as the kernel. The kernel is a relatively small shape that is repeatedly centered at each pixel within dimensions of the region that is being

transformed. Every such pixel is either added to the resulting region or not, depending on operation-specific condition on the minimum number of

kernel pixels that have to overlap with actual input region pixels (in the given position of the kernel). See description of Dilation for an example.

Dilation and Erosion

Dilation is one of two basic morphological transformations. Here each pixel P within the dimensions of the region being transformed is added to the

resulting region if and only if the structuring element centered at P overlaps with at least one pixel that belongs to the input region. Note that for a

circular kernel such transformation is equivalent to a uniform expansion of the region in every direction.

Erosion is a dual operation of Dilation. Here, each pixel P within the dimensions of the region being transformed is added to the resulting region if

and only if the structuring element centered at P is fully contained in the region pixels. Note that for a circular kernel such transformation is equivalent

to a uniform reduction of the region in every direction.

An example image. Mono equivalent of the image depicting

brightness of its pixels.

Result of the color-based thresholding

targeted at red pixels.

Expanding Reducing

Basic

Composite

https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdToRegion.html
https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdToRegion_Dynamic.html
https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdToRegion_RGB.html
https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdToRegion_HSx.html

Closing and Opening

The actual power of the Region Morphology lies in its composite operators - Closing and Opening. As we may have recently noticed, during the

blind region expansion performed by the Dilation operator, the gaps in the transformed region are filled in. Unfortunately, the expanded region no

longer corresponds to the objects being inspected. However, we can apply the Erosion operator to bring the expanded region back to its original

boundaries. The key point is that the gaps that were completely filled during the dilation will stay filled after the erosion. The operation of applying

Erosion to the result of Dilation of the region is called Closing, and is a tool of choice for the task of filling the gaps in the extracted region.

Opening is a dual operation of Closing. Here, the region being transformed is initially eroded and then dilated. The resulting region preserves the

form of the initial region, with the exception of thin/small parts, that are removed during the process. Therefore, Opening is a tool for removing the

thin/outlying parts from a region. We may note that in the example below, the Opening does the - otherwise relatively complicated - job of finding the

segment of the rubber band of excessive width.

Other Refinement Methods

Analysis

Once we obtain the region that corresponds to the object or the objects being inspected, we may commence the analysis - that is, extract the

information we are interested in.

Region Features

FabImage Studio allows to compute a wide range of numeric (e.g. area) and non-numeric (e.g. bounding circle) region features. Calculation of the

measures describing the obtained region is often the very aim of applying the blob analysis in the first place. If we are to check whether the

rectangular packaging box is deformed or not, we may be interested in calculating the rectangularity factor of the packaging region. If we are to check

if the chocolate coating on a biscuit is broad enough, we may want to know the area of the coating region.

It is important to remember, that when the obtained region corresponds to multiple image objects (and we want to inspect each of them separately),

we should apply the SplitRegionIntoBlobs filter before performing the calculation of features.

Numeric Features

Each of the following filters computes a number that expresses a specific property of the region shape.

Annotations in brackets indicate the range of the resulting values.

https://docs.fab-image.com/5.3/studio/filters/RegionGlobalTransforms/SplitRegionIntoBlobs.html

Non-numeric Features

Each of the following filters computes an object related to the shape of the region. Note that the primitives extracted using these filters can be made

subject of further analysis. For instance, we can extract the holes of the region using the RegionHoles filter and then measure their areas using the

RegionArea filter.

Annotations in brackets indicate FabImage Studio's type of the result.

Case Studies

Capsules

In this example we inspect a set of washing machine capsules on a conveyor line. Our aim is to identify the deformed capsules.

We will proceed in two steps: we will commence by designing a simple program that, given picture of the conveyor line, will be able to identify the

region corresponding to the capsule(s) in the picture. In the second step we will use this program as a building block of the complete solution.

Size of the region (0 -) Similarity to a circle (0.0 - 1.0)

Similarity to own convex hull (0.0 - 1.0) Similarity to a rectangle (0.0 - 1.0)

Similarity to a line (0.0 -) Moments of the region (0.0 -)

Count of the region holes (0 -) Orientation of the main region axis (0.0 - 180.0)

Length of the region contour (0.0 -)

Smallest axis-aligned rectangle containing the region (Box) Smallest circle containing the region (Circle2D)

Smallest any-orientation rectangle containing the region (Rectangle2D) Boundaries of the region (PathArray)

Longest segment connecting two points inside the region (Segment2D) Array of blobs representing gaps in the region (RegionArray)

Skeleton of the region (PathArray)

https://docs.fab-image.com/5.3/studio/filters/RegionFeatures/RegionHoles.html
https://docs.fab-image.com/5.3/studio/filters/RegionFeatures/RegionArea.html

FindRegion Routine

Our routine for Extraction and Refinement of the region is ready. As it constitutes a continuous block of filters performing a well defined task, it is

advisable to encapsulate the routine inside a macrofilter to enhance the readability of the soon-to-be-growing program.

In this section we will develop a program that will be responsible for the Extraction
and Refinement phases of the final solution. For brevity of presentation in this part

we will limit the input image to its initial segment.

After a brief inspection of the input image we may note that the task at hand will not be

trivial - the average brightness of the capsule body is similar to the intensity of the

background. On the other hand the border of the capsule is consistently darker than

the background. As it is the border of the object that bears significant information

about its shape we may use the basic ThresholdToRegion filter to extract the darkest

pixels of the image with the intention of filling the extracted capsule border during

further refinement.

The extracted region certainly requires such refinement - actually, there are two

issues that need to be addressed. We need to fill the shape of the capsule and

eliminate the thin horizontal stripes corresponding to the elements of the conveyor line

setup. Fortunately, there are fairly straightforward solutions for both of these

problems.

FillRegionHoles will extend the region to include all pixels enclosed by present region

pixels. After the region is filled all that remains is the removal of the thin conveyor lines

using the classic OpenRegion filter.

Initial image

ThresholdToRegion

FillRegionHoles

OpenRegion

https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdToRegion.html
https://docs.fab-image.com/5.3/studio/filters/RegionGlobalTransforms/FillRegionHoles.html
https://docs.fab-image.com/5.3/studio/filters/RegionMorphology/OpenRegion.html
https://docs.fab-image.com/5.3/studio/programming_model/Macrofilters.html

Complete Solution

Our program right now is capable of extracting the region that

directly corresponds to the capsules visible in the image.

What remains is to inspect each capsule and classify it as a

correct or deformed one.

As we want to analyze each capsule separately, we should

start with decomposition of the extracted region into an array

of connected components (blobs). This common operation

can be performed using the straightforward

SplitRegionIntoBlobs filter.

We are approaching the crucial part of our solution - how are

we going to distinguish correct capsules from deformed

ones? At this stage it is advisable to have a look at the

summary of numeric region features provided in Analysis
section. If we could find a numeric region property that is

correlated with the nature of the problem at hand (e.g. it takes

low values for a correct capsules and high values for a

deformed one, or conversely), we would be nearly done.

Rectangularity of a shape is defined as the ratio between its area and area of its smallest enclosing rectangle - the higher the value, the more the

shape of the object resembles a rectangle. As the shape of a correct capsule is almost rectangular (it is a rectangle with rounded corners) and

clearly more rectangular than the shape of deformed capsule, we may consider using rectangularity feature to classify the capsules.

Having selected the numeric feature that will be used for the classification, we are ready to add the ClassifyRegions filter to our program and feed it

with data. We pass the array of capsule blobs on its inRegions input and we select Rectangularity on the inFeature input. After brief interactive

experimentation with the inMinimum threshold we may observe that setting the minimum rectangularity to 0.95 allows proper discrimination of

correct (available at outAccepted) and deformed (outRejected) capsule blobs.

Region extracted by the FindRegion routine.

Decomposition of the region into individual blobs.

https://docs.fab-image.com/5.3/studio/filters/RegionGlobalTransforms/SplitRegionIntoBlobs.html
https://docs.fab-image.com/5.3/studio/filters/RegionRelations/ClassifyRegions.html

Blobs of low rectangularity selected by ClassifyRegions filter.

https://docs.fab-image.com/5.3/studio/filters/RegionRelations/ClassifyRegions.html

1D Edge Detection

Introduction

1D Edge Detection (also called 1D Measurement) is a classic technique of machine vision where

the information about image is extracted from one-dimensional profiles of image brightness. As we

will see, it can be used for measurements as well as for positioning of the inspected objects.

Main advantages of this technique include sub-pixel precision and high performance.

Concept

The 1D Edge Detection technique is based on an observation that any edge in the image corresponds to a rapid brightness change in the direction

perpendicular to that edge. Therefore, to detect the image edges we can scan the image along a path and look for the places of significant change of

intensity in the extracted brightness profile.

The computation proceeds in the following steps:

1. Profile extraction – firstly the profile of brightness along the given path is extracted. Usually the profile is smoothed to remove the noise.

2. Edge extraction – the points of significant change of profile brightness are identified as edge points – points where perpendicular edges

intersect the scan line.

3. Post-processing – the final results are computed using one of the available methods. For instance ScanSingleEdge filter will select and

return the strongest of the extracted edges, while ScanMultipleEdges filter will return all of them.

Example

The image is scanned along the path and the brightness profile is extracted and smoothed.

Brightness profile is differentiated. Notice four peaks of the profile derivative which correspond to four prominent image edges intersecting the scan

line. Finally the peaks stronger than some selected value (here minimal strength is set to 5) are identified as edge points.

Filter Toolset

Basic toolset for the 1D Edge Detection-based techniques scanning for edges consists of 9 filters each of which runs a single scan along the given

path (inScanPath). The filters differ on the structure of interest (edges / ridges / stripes (edge pairs)) and its cardinality (one / any fixed number /

unknown number).

Edges

Single
Result

Multiple
Results

Fixed
Number

of
Results

https://docs.fab-image.com/5.3/studio/filters/1DEdgeDetection/ScanSingleEdge.html
https://docs.fab-image.com/5.3/studio/filters/1DEdgeDetection/ScanMultipleEdges.html

Note that in FabImage Library there is the CreateScanMap function that has to be used before a usage of any other 1D Edge Detection function.

The special function creates a scan map, which is passed as an input to other functions considerably speeding up the computations.

Parameters

Profile Extraction

In each of the nine filters the brightness profile is extracted in exactly the same way. The stripe of

pixels along inScanPath of width inScanWidth is traversed and the pixel values across the path are

accumulated to form one-dimensional profile. In the picture on the right the stripe of processed pixels

is marked in orange, while inScanPath is marked in red.

The extracted profile is smoothed using Gaussian smoothing with standard deviation of

inSmoothingStdDev. This parameter is important for the robustness of the computation - we

should pick the value that is high enough to eliminate noise that could introduce false / irrelevant

extrema to the profile derivative, but low enough to preserve the actual edges we are to detect.

The inSmoothingStdDev parameter should be adjusted through interactive experimentation using outBrightnessProfile output, as demonstrated

below.

Edge Extraction

After the brightness profile is extracted and refined, the derivative of the profile is computed and its

local extrema of magnitude at least inMinMagnitude are identified as edge points. The

inMinMagnitude parameter should be adjusted using the outResponseProfile output.

The picture on the right depicts an example outResponseProfile profile. In this case the significant

extrema vary in magnitude from 11 to 13, while the magnitude of other extrema is lower than 3.

Therefore any inMinMagnitude value in range (4, 10) would be appropriate.

Stripes

Single
Result

Multiple
Results

Fixed
Number

of
Results

Ridges

Single
Result

Multiple
Results

Fixed
Number

of
Results

Too low inSmoothingStdDev - too much

noise

Appropriate inSmoothingStdDev - low noise,

significant edges are preserved

Too high inSmoothingStdDev - significant

edges are attenuated

Edge Transition

Filters being discussed are capable of filtering the edges depending on the kind of transition they represent - that is, depending on whether the

intensity changes from bright to dark, or from dark to bright. The filters detecting individual edges apply the same condition defined using the

inTransition parameter to each edge (possible choices are bright-to-dark, dark-to-bright and any).

Stripe Intensity

The filters detecting stripes expect the edges to alternate in their characteristics. The parameter inIntensity defines whether each stripe should

bound the area that is brighter, or darker than the surrounding space.

Case Study: Blades

Assume we want to count the blades of a circular saw

from the picture.

We will solve this problem running a single 1D Edge

Detection scan along a circular path intersecting the

blades, and therefore we need to produce appropriate

circular path. For that we will use a straightforward

CreateCirclePath filter. The built-in editor will allow us to

point & click the required inCircle parameter.

The next step will be to pick a suitable measuring filter.

Because the path will alternate between dark blades and

white background, we will use a filter that is capable of

measuring stripes. As we do not now how many blades

there are on the image (that is what we need to compute),

the ScanMultipleStripes filter will be a perfect choice.

We expect the measuring filter to identify each blade as a single stripe (or each space between blades, depending on our selection of inIntensity),

therefore all we need to do to compute the number of blades is to read the value of the outStripes.Count property output of the measuring filter.

The program solves the problem as expected (perhaps after increasing the inSmoothingStdDev from default of 0.6 to bigger value of 1.0 or 2.0)

and detects all 30 blades of the saw.

inTransition = Any inTransition = BrightToDark inTransition = DarkToBright

inIntensity = Dark inIntensity = Bright

https://docs.fab-image.com/5.3/studio/filters/PathBasics/CreateCirclePath.html
https://docs.fab-image.com/5.3/studio/filters/1DEdgeDetection/ScanMultipleStripes.html

1D Edge Detection – Subpixel Precision

Introduction

One of the key strengths of the 1D Edge Detection tools is their ability do detect edges with precision higher than the pixel grid. This is possible,

because the values of the derivative profile (of pixel values) can be interpolated and its maxima can be found analytically.

Example: Parabola Fitting

Let us consider a sample profile of pixel values corresponding to an edge (red):

Sample edge profile (red) and its derivative (green). Please note, that the derivative is shifted by 0.5.

The steepest segment is between points 4.0 and 5.0, which corresponds to the maximum of the derivative (green) at 4.5. Without the subpixel

precision the edge would be found at this point.

It is, however, possible to consider information about the values of the neighbouring profile points to extract the edge location with higher precision.

The simplest method is to fit a parabola to three consecutive points of the derivative profile:

Fitting a parabola to three consecutive points.

Now, the edge point we are looking for can be taken from the maximum of the parabola. In this case it will be 4.363, which is already a subpixel-

precise result. This precision is still not very high, however. We know it from an experiment – this particular profile, which we are considering in this

example, has been created from a perfect gaussian edge located at the point 430 and downsampled 100 times to simulate a camera looking at an

edge at the point 4.3. The error that we got, is 0.063 px. From other experiments we know that in the worst case it can be up to 1/6 px.

Advanced: Methods Available in FabImage

More advanced methods can be used that consider not three, but four consecutive points and which employ additional techniques to assure the

highest precision in presence of noise and other practical edge distortions. In FabImage Studio they are available in a form of 3 different profile

interpolation methods:

Linear – the simplest method that results in pixel-precise results,

Quadratic3 – an improved fitting of parabola to 3 consecutive points,

Quadratic4 – an advanced method that fits parabola to 4 consecutive points.

The precision of these methods on perfect gaussian edges is respectively: 1/2 px, 1/6 px and 1/23 px. It has to be added, however, that the

Quadratic4 method differs significantly in its performance on edges which are only slightly blurred – when the image quality is close to perfect, the

precision can be even higher than 1/50 px.

Shape Fitting

Introduction

Shape Fitting is a machine vision technique that allows for precise detection of objects whose

shapes and rough positions are known in advance. It is most often used in measurement

applications for establishing line segments, circles, arcs and paths defining the shape that is to be

measured.

As this technique is derived from 1D Edge Detection, its key advantages are similar – including sub-

pixel precision and high performance.

Concept

The main idea standing behind Shape Fitting is that a continuous object (such as a circle, an arc or a segment) can be determined using a finite set

of points belonging to it. These points are computed by means of appropriate 1D Edge Detection filters and are then combined together into a single

higher-level result.

Thus, a single Shape Fitting filter's work consists of the following steps:

1. Scan segments preparation – a series of segments is prepared. The number, length and orientations of the segments are computed from

the filter's parameters.

2. Points extraction – points that should belong to the object being fitted are extracted using (internally) a proper 1D Edge Detection filter (e.g.

ScanSingleEdge in FitCircleToEdges) along each of the scan segments as the scan path.

3. Object fitting – the final result is computed with the use of a technique that allows fitting an object to a set of points. In this step, a filter from

Geometry 2D Fitting is internally used (e.g. FitCircleToPoints in FitCircleToEdges). An exception to the rule is path fitting. No Geometry 2D
Fitting filter is needed there, because the found points serve themselves as the output path characteristic points.

Toolset

The whole toolset for Shape Fitting consists of several filters. The filters differ on the object being fitted (a circle, an arc, a line segment or a path) and

the 1D Edge Detection structures extracted along the scan segments (edges, ridges or stripe, all of them clearly discernible on the input image).

Sample Shape Fitting filters.

Parameters

Because of the internal use of 1D Edge Detection filters and Geometry 2D Fitting filters, all parameters known from them are also present in Shape

Fitting filters interfaces.

Beside these, there are also a few parameters specific to the subject of shape fitting. The inScanCount parameter controls the number of the scan

segments. However, not all of the scans have to succeed in order to regard the whole fitting process as being successful. The

inMaxIncompleteness parameter determines what fraction of the scans may fail.

The scan segments are created according to

the fitting field and other parameters (e.g.

inScanCount).

ScanSingleEdge (or another proper 1D Edge

Detection filter) is performed.

A segment is fitted to the obtained points.

The scan segments are created according to

the fitting field and other parameters (e.g.

inScanCount).

ScanSingleEdge (or another proper 1D Edge

Detection filter) is performed.

A segment is fitted to the obtained points.

https://docs.fab-image.com/5.3/studio/filters/1DEdgeDetection/index.html
https://docs.fab-image.com/5.3/studio/filters/ShapeFitting/index.html
https://docs.fab-image.com/5.3/studio/filters/1DEdgeDetection/index.html
https://docs.fab-image.com/5.3/studio/filters/ShapeFitting/index.html
https://docs.fab-image.com/5.3/studio/filters/1DEdgeDetection/index.html
https://docs.fab-image.com/5.3/studio/filters/1DEdgeDetection/ScanSingleEdge.html
https://docs.fab-image.com/5.3/studio/filters/ShapeFitting/FitCircleToEdges.html
https://docs.fab-image.com/5.3/studio/filters/Geometry2DFitting/index.html
https://docs.fab-image.com/5.3/studio/filters/Geometry2DFitting/FitCircleToPoints.html
https://docs.fab-image.com/5.3/studio/filters/ShapeFitting/FitCircleToEdges.html
https://docs.fab-image.com/5.3/studio/filters/Geometry2DFitting/index.html
https://docs.fab-image.com/5.3/studio/filters/1DEdgeDetection/ScanSingleEdge.html
https://docs.fab-image.com/5.3/studio/filters/1DEdgeDetection/index.html
https://docs.fab-image.com/5.3/studio/filters/1DEdgeDetection/ScanSingleEdge.html
https://docs.fab-image.com/5.3/studio/filters/1DEdgeDetection/index.html
https://docs.fab-image.com/5.3/studio/filters/ShapeFitting/index.html
https://docs.fab-image.com/5.3/studio/filters/1DEdgeDetection/index.html
https://docs.fab-image.com/5.3/studio/filters/ShapeFitting/index.html
https://docs.fab-image.com/5.3/studio/filters/1DEdgeDetection/index.html
https://docs.fab-image.com/5.3/studio/filters/Geometry2DFitting/index.html
https://docs.fab-image.com/5.3/studio/filters/ShapeFitting/index.html

FitCircleToEdges performed on the sample image with inMaxIncompleteness = 0.25. Although two scans have ended in failure, the circle has been

fitted successfully.

The path fitting functions have some additional parameters, which help to control the output path shape. These parameters are:

inMaxDeviationDelta – it defines the maximal allowed difference between deviations of consecutive points of the output path from the

corresponding input path points; if the difference between deviations is greater, the point is considered to be not found at all.

inMaxInterpolationLength – if some of the scans fail or if some of found points are classified to be wrong according to another control

parameters (e.g. inMaxDeviationDelta), output path points corresponding to them are interpolated depending on points in their nearest

vicinity. No more than inMaxInterpolationLength consecutive points can be interpolated, and if there exists a longer series of points that

would have to be interpolated, the fitting is considered to be unsuccessful. The exception to this behavior are points which were not found on
both ends of the input path. Those are not part of the result at all.

FitPathToEdges performed on the sample image with inMaxDeviationDelta = 2 and inMaxInterpolationLength = 3. Blue points are the points that

were interpolated. If inMaxInterpolationLength value was less than 2, the fitting would have failed.

https://docs.fab-image.com/5.3/studio/filters/ShapeFitting/FitCircleToEdges.html
https://docs.fab-image.com/5.3/studio/filters/ShapeFitting/FitPathToEdges.html

Template Matching

Introduction

Template Matching is a high-level machine vision technique that identifies the parts on an image that

match a predefined template. Advanced template matching algorithms allow to find occurrences of

the template regardless of their orientation and local brightness.

Template Matching techniques are flexible and relatively straightforward to use, which makes them

one of the most popular methods of object localization. Their applicability is limited mostly by the

available computational power, as identification of big and complex templates can be time-

consuming.

Concept

Template Matching techniques are expected to address the following need: provided a reference image of an object (the template image) and an

image to be inspected (the input image) we want to identify all input image locations at which the object from the template image is present.

Depending on the specific problem at hand, we may (or may not) want to identify the rotated or scaled occurrences.

We will start with a demonstration of a naive Template Matching method, which is insufficient for real-life applications, but illustrates the core concept

from which the actual Template Matching algorithms stem from. After that we will explain how this method is enhanced and extended in advanced

Grayscale-based Matching and Edge-based Matching routines.

Naive Template Matching

Imagine that we are going to inspect an image of a plug and our goal is to find its pins. We are provided with a template image representing the

reference object we are looking for and the input image to be inspected.

We will perform the actual search in a rather straightforward way – we will position the template over the image at every possible location, and each

time we will compute some numeric measure of similarity between the template and the image segment it currently overlaps with. Finally we will

identify the positions that yield the best similarity measures as the probable template occurrences.

Image Correlation

One of the subproblems that occur in the specification above is calculating the similarity measure of the aligned template image and the overlapped

segment of the input image, which is equivalent to calculating a similarity measure of two images of equal dimensions. This is a classical task, and a

numeric measure of image similarity is usually called image correlation.

Cross-Correlation

The fundamental method of calculating the image correlation is so called cross-correlation,

which essentially is a simple sum of pairwise multiplications of corresponding pixel values of

the images.

Though we may notice that the correlation value indeed seems to reflect the similarity of the

images being compared, cross-correlation method is far from being robust. Its main

drawback is that it is biased by changes in global brightness of the images - brightening of an

image may sky-rocket its cross-correlation with another image, even if the second image is

not at all similar.

Normalized Cross-Correlation

Normalized cross-correlation is an enhanced version of the classic cross-correlation method that introduces two improvements over the original

one:

The results are invariant to the global brightness changes, i.e. consistent brightening or darkening of
either image has no effect on the result (this is accomplished by subtracting the mean image
brightness from each pixel value).

The final correlation value is scaled to [-1, 1] range, so that NCC of two identical images equals 1.0,
while NCC of an image and its negation equals -1.0.

Template Correlation Image

Let us get back to the problem at hand. Having introduced the Normalized Cross-Correlation - robust measure of image similarity - we are now able

to determine how well the template fits in each of the possible positions. We may represent the results in a form of an image, where brightness of

each pixels represents the NCC value of the template positioned over this pixel (black color representing the minimal correlation of -1.0, white color

representing the maximal correlation of 1.0).

Template image Input image

Image1 Image2 Cross-Correlation

19404780

23316890

24715810

Image1 Image2 NCC

-0.417

0.553

0.844

Identification of Matches

All that needs to be done at this point is to decide which points of the template correlation image are good enough to be considered actual matches.

Usually we identify as matches the positions that (simultaneously) represent the template correlation:

stronger that some predefined threshold value (i.e stronger that 0.5)

locally maximal (stronger that the template correlation in the neighboring pixels)

Summary

It is quite easy to express the described method in FabImage Studio - we will need just two built-

in filters. We will compute the template correlation image using the ImageCorrelationImage filter,

and then identify the matches using ImageLocalMaxima - we just need to set the inMinValue
parameter that will cut-off the weak local maxima from the results, as discussed in previous

section.

Though the introduced technique was sufficient to solve the problem being considered, we may

notice its important drawbacks:

Template occurrences have to preserve the orientation of the reference template image.

The method is inefficient, as calculating the template correlation image for medium to large images is time consuming.

In the next sections we will discuss how these issues are being addressed in advanced template matching techniques: Grayscale-based Matching
and Edge-based Matching.

Grayscale-based Matching, Edge-based Matching

Grayscale-based Matching is an advanced Template Matching algorithm that extends the original idea of correlation-based template detection

enhancing its efficiency and allowing to search for template occurrences regardless of its orientation. Edge-based Matching enhances this method

even more by limiting the computation to the object edge-areas.

In this section we will describe the intrinsic details of both algorithms. In the next section (Filter toolset) we will explain how to use these techniques

in FabImage Studio.

Image Pyramid

Image Pyramid is a series of images, each image being a result of downsampling (scaling down, by the factor of two in this case) of the previous

element.

Pyramid Processing

Image pyramids can be applied to enhance the efficiency of the correlation-based template detection. The important observation is that the template

depicted in the reference image usually is still discernible after significant downsampling of the image (though, naturally, fine details are lost in the

process). Therefore we can identify match candidates in the downsampled (and therefore much faster to process) image on the highest level of our

pyramid, and then repeat the search on the lower levels of the pyramid, each time considering only the template positions that scored high on the

previous level.

At each level of the pyramid we will need appropriately downsampled picture of the reference template, i.e. both input image pyramid and template

image pyramid should be computed.

Template image Input image Template correlation image

Areas of template correlation above 0.75 Points of locally maximal template correlation Points of locally maximal template correlation

above 0.75

Level 0 (input image) Level 1 Level 2

https://docs.fab-image.com/5.3/studio/filters/ImageMetrics/ImageCorrelationImage.html
https://docs.fab-image.com/5.3/studio/filters/ImageFeatures/ImageLocalMaxima.html

Grayscale-based Matching

Although in some of the applications the orientation of the objects is uniform and fixed (as we have seen in the plug example), it is often the case that

the objects that are to be detected appear rotated. In Template Matching algorithms the classic pyramid search is adapted to allow multi-angle

matching, i.e. identification of rotated instances of the template.

This is achieved by computing not just one template image pyramid, but a set of pyramids - one for each possible rotation of the template. During the

pyramid search on the input image the algorithm identifies the pairs (template position, template orientation) rather than sole template positions.

Similarly to the original schema, on each level of the search the algorithm verifies only those (position, orientation) pairs that scored well on the

previous level (i.e. seemed to match the template in the image of lower resolution).

The technique of pyramid matching together with multi-angle search constitute the Grayscale-based Template Matching method.

Edge-based Matching

Edge-based Matching enhances the previously discussed Grayscale-based Matching using one crucial observation - that the shape of any object is

defined mainly by the shape of its edges. Therefore, instead of matching of the whole template, we could extract its edges and match only the nearby

pixels, thus avoiding some unnecessary computations. In common applications the achieved speed-up is usually significant.

Matching object edges instead of an object as a whole requires slight

modification of the original pyramid matching method: imagine we are matching

an object of uniform color positioned over uniform background. All of object

edge pixels would have the same intensity and the original algorithm would

match the object anywhere wherever there is large enough blob of the

appropriate color, and this is clearly not what we want to achieve. To resolve

this problem, in Edge-based Matching it is the gradient direction (represented

as a color in HSV space for the illustrative purposes) of the edge pixels, not

their intensity, that is matched.

Filter Toolset

FabImage Studio provides a set of filters implementing both Grayscale-based
Matching and Edge-based Matching. For the list of the filters see Template Matching filters.

As the template image has to be preprocessed before the pyramid matching (we need to calculate the template image pyramids for all possible

rotations and scales), the algorithms are split into two parts:

Model Creation - in this step the template image pyramids are calculated and the results are stored in a model - atomic object representing

all the data needed to run the pyramid matching.

Matching - in this step the template model is used to match the template in the input image.

Such an organization of the processing makes it possible to compute the model once and reuse it multiple times.

Available Filters

For both Template Matching methods two filters are provided, one for each step of the algorithm.

Please note that the use of CreateGrayModel and CreateEdgeModel2 filters will only be necessary in more advanced applications. Otherwise it is

enough to use a single filter of the Matching step and create the model by setting the inGrayModel or inEdgeModel parameter of the filter. For more

information see Creating Models for Template Matching. The CreateEdgeModel2 and LocateMultipleObjects_Edges2 filters are preferred over

CreateEdgeModel1 and LocateMultipleObjects_Edges1 because they are newer, more advanced versions with more capabilities.

Level 0 (template reference image) Level 1 Level 2

Template image Input image Results of multi-angle matching

Grayscale-based Matching:

Edge-based Matching:

Different kinds of template pyramids used in Template Matching algorithms.

Grayscale-based Matching Edge-based Matching

Model
Creation:

Matching:

https://docs.fab-image.com/5.3/studio/filters/TemplateMatching/index.html
https://docs.fab-image.com/5.3/studio/filters/TemplateMatching/CreateGrayModel.html
https://docs.fab-image.com/5.3/studio/filters/TemplateMatching/CreateEdgeModel2.html
https://docs.fab-image.com/5.3/studio/user_interface/CreatingModelsForTemplateMatching.html
https://docs.fab-image.com/5.3/studio/filters/TemplateMatching/CreateEdgeModel2.html
https://docs.fab-image.com/5.3/studio/filters/TemplateMatching/LocateMultipleObjects_Edges2.html
https://docs.fab-image.com/5.3/studio/filters/TemplateMatching/CreateEdgeModel1.html
https://docs.fab-image.com/5.3/studio/filters/TemplateMatching/LocateMultipleObjects_Edges1.html

The main challenge of applying the Template Matching technique lies in careful adjustment of filter parameters, rather than designing the program

structure.

Advanced Application Schema

There are several kinds of advanced applications, for which the interactive GUI for Template Matching is not enough and the user needs to use the

CreateGrayModel or CreateEdgeModel2 filter directly. For example:

1. When creating the model requires non-trivial image preprocessing.

2. When we need an entire array of models created automatically from a set of images.

3. When the end user should be able to define his own templates in the runtime application (e.g. by making a selection on an input image).

Schema 1: Model Creation in a Separate Program

For the cases 1 and 2 it is advisable to implement model creation in a separate Task macrofilter, save the model to an FIDATA file and then link that

file to the input of the matching filter in the main program:

When this program is ready, you can run the "CreateModel" task as a program at any time you want to recreate the model. The link to the data file on

the input of the matching filter does not need any modifications then, because this is just a link and what is being changed is only the file on disk.

Model Creation:

Main Program:

https://docs.fab-image.com/5.3/studio/filters/TemplateMatching/CreateGrayModel.html
https://docs.fab-image.com/5.3/studio/filters/TemplateMatching/CreateEdgeModel2.html

Schema 2: Dynamic Model Creation

For the case 3, when the model has to be created dynamically, both the model creating filter and the matching filter have to be in the same task. The

former, however, should be executed conditionally, when a respective HMI event is raised (e.g. the user clicks an ImpulseButton or makes some

mouse action in a VideoBox). For representing the model, a register of EdgeModel2? type should be used, that will store the latest model (another

option is to use LastNotNil filter). Here is an example realization with the model being created from a predefined box on an input image when a button

is clicked in the HMI:

Model Creation

Height of the Pyramid

The inMaxPyramidLevel parameter determines the number of levels of the pyramid matching and should be set to the largest number for which the

template is still recognizable on the highest pyramid level. This value should be selected through interactive experimentation using the diagnostic

output diagTemplatePyramid (Grayscale-based Matching) or diagEdgePyramid (Edge-based Matching).

The inMinPyramidLevel parameter determines the lowest pyramid level that is generated during creation phase and the lowest pyramid level that

the occurrences are tracked to during location phase. If the parameter is set to lower value in location than in creation, the missing levels are

generated dynamically by the locating filter. This approach leads to much faster creation, but a bit slower location.

In the following example the inMaxPyramidLevel value of 4 would be too high (for both methods), as the structure of the template is entirely lost on

this level of the pyramid. Also the value of 3 seems a bit excessive (especially in case of Edge-based Matching) while the value of 2 would definitely

be a safe choice.

Angle Range

The inMinAngle, inMaxAngle parameters determine the range of template orientations that will be considered in the matching process. For

instance (values in brackets represent the pairs of inMinAngle, inMaxAngle values):

Level 0 Level 1 Level 2 Level 3 Level 4

Grayscale-based
Matching

(diagTemplatePyramid):

Edge-based Matching
(diagEdgePyramid):

https://docs.fab-image.com/5.3/studio/programming_model/Macrofilters.html#Registers
https://docs.fab-image.com/5.3/studio/filters/LoopUtils/LastNotNil.html

(-180.0, 180.0): all rotations are considered (default value)

(-15.0, 15.0): the template occurrences are allowed to deviate from the reference template orientation at most by 15.0 degrees (in each
direction)

(0.0, 0.0): the template occurrences are expected to preserve the reference template orientation

Wide range of possible orientations introduces significant amount of overhead (both in memory usage and computing time), so it is advisable to limit

the range whenever possible, especially if different scales are also involved. The number of rotations created can be further manipulated with

inAnglePrecision parameter. Decreasing it results in smaller models and smaller execution times, but can also lead to objects that are slightly less

accurate.

Scale Range

The inMinScale, inMaxScale parameters determine the range of template scales that will be considered in the matching process. It enables

locating objects that are slightly smaller or bigger than the object used during model creation.

Wide range of possible scales introduces significant amount of overhead (both in memory usage and computing time), so it is advisable to limit the

range whenever possible. The number of scales created can be further manipulated with inScalePrecision parameter. Decreasing it results in

smaller models and smaller execution times, but can also lead to objects that are slightly less accurate.

Edge Detection Settings (only Edge-based Matching)

The inEdgeThreshold, inEdgeHysteresis parameters of CreateEdgeModel2 filter determine the settings of the hysteresis thresholding used to

detect edges in the template image. The lower the inEdgeThreshold value, the more edges will be detected in the template image. These

parameters should be set so that all the significant edges of the template are detected and the amount of redundant edges (noise) in the result is as

limited as possible. Similarly to the pyramid height, edge detection thresholds should be selected through interactive experimentation using the

outEdges output and the diagnostic output diagEdgePyramid - this time we need to look only at the picture at the lowest level.

The CreateEdgeModel2 filter will not allow to create a model in which no edges were detected at the top of the pyramid (which means not only some

significant edges were lost, but all of them), yielding an error in such case. Whenever that happens, the height of the pyramid, or the edge

thresholds, or both, should be reduced.

Matching

The inMinScore parameter determines how permissive the algorithm will be in verification of the match candidates - the higher the value the less

results will be returned. This parameter should be set through interactive experimentation to a value low enough to assure that all correct matches

will be returned, but not much lower, as too low value slows the algorithm down and may cause false matches to appear in the results.

Tips and Best Practices

How to Select a Method?

For vast majority of applications the Edge-based Matching method will be both more robust and more efficient than Grayscale-based Matching.

The latter should be considered only if the template being considered has smooth color transition areas that are not defined by discernible edges, but

still should be matched.

How to even further upgrade the results of Edge-based Matching?

You can use EnhanceMultipleObjectMatches filter or EnhanceSingleObjectMatch filter to fine-tune the results. A great example of usage is presented

in the CreateGoldenTemplate2 filter.

(15.0, 30.0) - excessive amount of noise (40.0, 60.0) - OK (60.0, 70.0) - significant edges lost

https://docs.fab-image.com/5.3/studio/filters/TemplateMatching/CreateEdgeModel2.html
https://docs.fab-image.com/5.3/studio/filters/TemplateMatching/CreateEdgeModel2.html
https://docs.fab-image.com/5.3/studio/filters/TemplateMatching/EnhanceMultipleObjectMatches.html
https://docs.fab-image.com/5.3/studio/filters/TemplateMatching/EnhanceSingleObjectMatch.html
https://docs.fab-image.com/5.3/studio/filters/ImageAnalysis/CreateGoldenTemplate2.html

Using Local Coordinate Systems

Introduction

Local coordinate systems provide a convenient means for inspecting objects that may appear at different positions on the input image. Instead of

denoting coordinates of geometrical primitives in the absolute coordinate system of the image, local coordinate systems make it possible to use

coordinates local to the object being inspected. In an initial step of the program the object is located and a local coordinate system is set accordingly.

Other tools can then be configured to work within this coordinate system, and this makes them independent of the object translation, rotation and

scale.

Two most important notions here are:

CoordinateSystem2D – a structure consisting of Origin (Point2D), Angle (real number) and Scale (real number), defining a relative Cartesian

coordinate system with its point (0, 0) located at the Origin point of the parent coordinate system (usually an image).

Alignment – the process of transforming geometrical primitives from a local coordinate system to the coordinates of an image (absolute), or

data defining such transformation. An alignment is usually represented with the CoordinateSystem2D data type.

Creating a Local Coordinate System

There are two standard ways of setting a local coordinate system:

1. With Template Matching filters it is straightforward as the filters have outObjectAlignment(s) outputs, which provide local coordinate systems

of the detected objects.

2. With one of the CreateCoordinateSystem filters , which allow for creating local coordinate systems manually at any location, and with any
rotation and scale. In most typical scenarios of this kind, the objects are located with 1D Edge Detection, Shape Fitting or Blob Analysis tools.

Using a Local Coordinate System

After a local coordinate system is created it can be used in the subsequent image analysis tools. The high level tools available in FabImage Studio

have an inAlignment (or similar) input, which just needs to be connected to the port of the created local coordinate system. At this point, you should

first run the program at least to the point where the coordinate system is computed, and then the geometrical primitives you will be defining on other

inputs, will be automatically aligned with the position of the inspected object.

Example 1: Alignment from Template Matching

To use object alignment from a Template Matching filter, you need to connect the Alignment ports:

Template Matching and an aligned circle fitting.

When you execute the template matching filter and enter the editor of the inFittingField input of the FitCircleToEdges filter, you will have the local

coordinate system already selected (you can also select it manually) and the primitive you create will have relative coordinates:

https://docs.fab-image.com/5.3/studio/filters/TemplateMatching/index.html
https://docs.fab-image.com/5.3/studio/filter_groups/CreateCoordinateSystem.html
https://docs.fab-image.com/5.3/studio/machine_vision_guide/1DEdgeDetection.html
https://docs.fab-image.com/5.3/studio/machine_vision_guide/ShapeFitting.html
https://docs.fab-image.com/5.3/studio/machine_vision_guide/BlobAnalysis.html
https://docs.fab-image.com/5.3/studio/filters/TemplateMatching/index.html
https://docs.fab-image.com/5.3/studio/filters/ShapeFitting/FitCircleToEdges.html

Editing an expected circle in a local coordinate system.

During program execution this geometrical primitive will be automatically aligned with the object position. Moreover, you will be able to adjust the input

primitive in the context of any input image, because they will be always displayed aligned. Here are example results:

Example 2: Alignment from Blob Analysis

In many applications objects can be located with methods simpler and faster than Template Matching – like 1D Edge Detection, Shape Fitting or Blob

Analysis. In the following example we will show how to create a local coordinate system from two blobs:

Two holes clearly define the object location.

In the first step we detect the blobs (see also: Blob Analysis) and their centers:

https://docs.fab-image.com/5.3/studio/machine_vision_guide/1DEdgeDetection.html
https://docs.fab-image.com/5.3/studio/machine_vision_guide/ShapeFitting.html
https://docs.fab-image.com/5.3/studio/machine_vision_guide/BlobAnalysis.html
https://docs.fab-image.com/5.3/studio/machine_vision_guide/BlobAnalysis.html

In the second step we sort the centers by the X coordinate and create a coordinate system "from segment" defined by the two points

(CreateCoordinateSystemFromSegment). The segment defines both the origin and the orientation. Having this coordinate system ready, we connect

it to the inScanPathAlignment input of ScanExactlyNRidges, which will measure the distance between two insets. The measurement will work

correctly irrespective of the object position (mind the expanded structure inputs and outputs):

Manual Alignment

In some cases the filter you will need to use with a local coordinate system will have no appropriate inAlignment input. In such cases the solution is

to transform the primitive manually with filters like AlignPoint, AlignCircle, AlignRectangle. These filters accept a geometrical primitive defined in a

local coordinate system, and the coordinate system itself, and return the same primitive, but with absolute coordinates, i.e. aligned to the coordinate

system of an image.

A very common case is with ports of type Region, which is pixel-precise and, while allowing for creation of arbitrary shapes, cannot be directly

transformed. In such cases it is advisable to use the CreateRectangleRegion filter and define the region-of-interest at inRectangle. The filter, having

also the inRectangleAlignment input connected, will return a region properly aligned with the related object position. Some ready-made tools, e.g.

CheckPresence_Intensity, use this approach internally.

Not Mixing Local Coordinate Systems

It is important to keep in mind that geometrical primitives that appear in different places of a program may belong to different coordinate systems.

When such different objects are combined together (e.g. with a filter like SegmentSegmentIntersection) or placed on a single data preview, the

results will be meaningless or at least confusing. Thus, only objects belonging to the same coordinate system should be combined. In particular,

when placing primitives on a preview on top of an image, only aligned primitives (with absolute coordinates) should be used.

As a general rule, image analysis filters of FabImage Studio accept primitives in local coordinate systems on inputs, but outputs are always aligned

(i.e. in the absolute coordinate system). In particular, many filters that align input primitives internally also have outputs that contain the input primitive

transformed to the absolute coordinate system. For example, the ScanSingleEdge filters has a inScanPath input defined in a local coordinate

system and a corresponding outAlignedScanPath output defined in the absolute coordinate system:

The ScanSingleEdge filter with a pair of ports: inScanPath and outAlignedScanPath, belonging to different coordinate systems.

Filters detecting blobs and their centers.

The result of blob detection.

Filters creating a coordinate systems and performing an aligned

measurement.

Created local coordinate system and an aligned measurement.

https://docs.fab-image.com/5.3/studio/filters/Geometry2DConstructions/CreateCoordinateSystemFromSegment.html
https://docs.fab-image.com/5.3/studio/filters/1DEdgeDetection/ScanExactlyNRidges.html
https://docs.fab-image.com/5.3/studio/filters/Geometry2DSpatialTransforms/AlignPoint.html
https://docs.fab-image.com/5.3/studio/filters/Geometry2DSpatialTransforms/AlignCircle.html
https://docs.fab-image.com/5.3/studio/filters/Geometry2DSpatialTransforms/AlignRectangle.html
https://docs.fab-image.com/5.3/studio/datatypes/Region.html
https://docs.fab-image.com/5.3/studio/filters/RegionBasics/CreateRectangleRegion.html
https://docs.fab-image.com/5.3/studio/filters/ImageAnalysis/CheckPresence_Intensity.html
https://docs.fab-image.com/5.3/studio/filters/Geometry2DIntersections/SegmentSegmentIntersection.html
https://docs.fab-image.com/5.3/studio/filters/1DEdgeDetection/ScanSingleEdge.html
https://docs.fab-image.com/5.3/studio/filters/1DEdgeDetection/ScanSingleEdge.html

Result of data extraction using OCR.

Optical Character Recognition

Introduction

Optical Character Recognition (OCR) is a machine vision task consisting in extracting textual

information from images.

State of the art techniques for OCR offer high accuracy of text recognition and invulnerability

to medium grain graphical noises. They are also applicable for recognition of characters made

using dot matrix printers. This technology gives satisfactory results for partially occluded or

deformed characters.

Efficiency of the recognition process mostly depends on the quality of text segmentation

results. Most of the recognition cases can be done using a provided set of recognition models.

In other cases a new recognition model can be easily prepared.

Concept

OCR technology is widely used for automatic data reading from various sources. It is especially used to gather data from documents and printed

labels.

In the first part of this manual usage of high level filters will be described.

The second part of this manual shows how to use standard OCR models provided with FabImage Studio. It also shows how to prepare an image to

get best possible results of recognition.

The third part describes the process of preparing and training OCR models.

The last part presents an example program that reads text from images.

Using high level Optical Character Recognition filters

FabImage Studio offers a convenient way to extract a text region from an image and then read it using a trained OCR classifier.

The typical OCR application consists of the following steps:

1. Find text position – locate the text position using template matching,

2. Extract text – use the filter ExtractText to distinct the text form the background and perform its segmentation,

3. Read text – recognizing the extracted characters with the ReadText filter.

Example OCR application using high level filters.

FabImage Studio provides convenient graphical tools for configuring the OCR process. More informations can be found in the following articles:

1. Creating Text Segmentation Models

2. Creating Text Recognition Models

Details on Optical Character Recognition technique

Reading text from images

In order to achieve the most accurate recognition it is necessary to perform careful text extraction and segmentation. The overall process of

acquiring text from images consists of the following steps:

https://docs.fab-image.com/5.3/studio/filters/OpticalCharacterRecognition/ExtractText.html
https://docs.fab-image.com/5.3/studio/filters/OpticalCharacterRecognition/ReadText.html
https://docs.fab-image.com/5.3/studio/user_interface/ConfiguringTextSegmentation.html
https://docs.fab-image.com/5.3/studio/user_interface/CreatingOcrClassifier.html

1. Getting text location,

2. Extracting text from the background,

3. Segmenting text,

4. Using prepared OCR models,

5. Character recognition,

6. Interpreting results,

7. Verifying results.

The following sections will introduce methods used to detect and recognize text from images. For better understanding of this guide the reader

should be familiar with basic blob analysis techniques.

Getting text location

In general, text localization tasks can be divided into three cases:

1. The location of text is fixed and it is described by boxes called masks. For example, the personal identification card is produced according to
the formal specification. The location of each data field is known. A well calibrated vision system can take images in which the location of the
text is almost constant.

An example image with text masks.

2. Text location is not fixed, but it is related to a characteristic element on the input images or to a special marker (an optical mark). To get the
location of the text the optical mark has to be found. This can be done with template matching, 1D edge detection or other technique.

3. The location of text is not specified, but characters can be easily separated from the background with image thresholding. The correct
characters can then be found with blob analysis techniques.

Getting text from a bottle cap.

When the text location is specified, the image under analysis must be transformed to make text lines parallel to the X-axis. This can be done with

RotateImage, CropImageToRectangle or ImageAlongPath filters.

Extracting text from the background

A major complication during the process of text extraction may be uneven light. Some techniques like light normalization or edge sharpening can help

in finding characters. The example of light normalization can be found in the example project Examples\Tablets. The presentation of image

sharpening using the Fourier transform can be found in the Examples\Fourier example.

Original image.

Image after light normalization.

https://docs.fab-image.com/5.3/studio/machine_vision_guide/BlobAnalysis.html
https://docs.fab-image.com/5.3/studio/filters/ImageSpatialTransforms/RotateImage.html
https://docs.fab-image.com/5.3/studio/filters/ImageSpatialTransforms/CropImageToRectangle.html
https://docs.fab-image.com/5.3/studio/filters/ImageSpatialTransforms/ImageAlongPath.html

Image after low-frequency image damping using the Fourier transform.

Text extraction is based on image binarization techniques. To extract characters, filters like ThresholdToRegion and ThresholdToRegion_Dynamic

can be used. In order to avoid recognizing regions which do not include characters, it is advisable to use filters based on blob area.

Sample images with uneven light.

Results of ThresholdToRegion and ThresholdToRegion_Dynamic on images with

uneven light.

At this point the extracted text region is prepared for segmentation.

Segmenting text

Text region segmentation is a process of splitting a region into lines and individual characters. The recognition step is only possible if each region

contains a single character.

Firstly, if there are multiple lines of text, separation into lines must be performed. If the text orientation is horizontal, simple region dilation can be used

followed by splitting the region into blobs. In other cases the text must be transformed, so that the lines become horizontal.

The process of splitting text into lines using region morphology filters.

When text text lines are separated, each line must be split into individual characters. In a case when characters are not made of diacritic marks and

characters can be separated well, the filter SplitRegionIntoBlobs can be used. In other cases the filter SplitRegionIntoExactlyNCharacters or

SplitRegionIntoMultipleCharacters must be used.

Character segmentation using SplitRegionIntoBlobs.

Character segmentation using SplitRegionIntoMultipleCharacters.

Next, the extracted characters will be translated from graphical representation to textual representation.

Using prepared OCR models

Standard OCR models are typically located in the disk directory C:\ProgramData\FabImage\{FabImage Product Name}\PretrainedFonts.

The table below shows the list of available font models:

https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdToRegion.html
https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdToRegion_Dynamic.html
https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdToRegion.html
https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdToRegion_Dynamic.html
https://docs.fab-image.com/5.3/studio/filters/RegionGlobalTransforms/SplitRegionIntoBlobs.html
https://docs.fab-image.com/5.3/studio/filters/OpticalCharacterRecognition/SplitRegionIntoExactlyNCharacters.html
https://docs.fab-image.com/5.3/studio/filters/OpticalCharacterRecognition/SplitRegionIntoMultipleCharacters.html
https://docs.fab-image.com/5.3/studio/filters/RegionGlobalTransforms/SplitRegionIntoBlobs.html
https://docs.fab-image.com/5.3/studio/filters/OpticalCharacterRecognition/SplitRegionIntoMultipleCharacters.html

Character recognition

FabImage Library offers two types of character classifiers:

1. Classifier based on multi-layer perceptron (MLP).

2. Classifier based on support vector machines (SVM).

Both of the classifiers are stored in the OcrModel type. To get a text from character regions use the RecognizeCharacters filter, shown on the image

below:

The first and the most important step is to choose the appropriate character normalization size. The internal classifier recognizes characters using

their normalized form. More information about character normalization process will be provided in the section describing the process of classifier

training.

The character normalization allows to classify characters with different sizes. The parameter inCharacterSize defines the size of a character

before the normalization. When the value is not provided, the size is calculated automatically using the character bounding box.

Font
name

Font
typeface

Set
name

Characters

OCRA monospaced

AZ ABCDEFGHIJKLMNOPQRSTUVWXYZ.-/

AZ_small abcdefghijklmnopqrstuvwxyz.-/

09 0123456789.-/+

AZ09 ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.-/+

OCRB monospaced

AZ ABCDEFGHIJKLMNOPQRSTUVWXYZ.-/

AZ_small abcdefghijklmnopqrstuvwxyz.-/

09 0123456789.-/+

AZ09 ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.-/+

MICR monospaced ABC09 ABC0123456789

Computer monospaced

AZ ABCDEFGHIJKLMNOPQRSTUVWXYZ.-/

AZ_small abcdefghijklmnopqrstuvwxyz.-/

09 0123456789.-/+

AZ09 ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.-/+

DotMatrix monospaced

AZ ABCDEFGHIJKLMNOPQRSTUVWXYZ+-./

AZ09
ABCDEFGHIJKLMNOPQRSTUVWXYZ+-

01234556789./

09 01234556789.+-/

Regular proportional

AZ ABCDEFGHIJKLMNOPQRSTUVWXYZ.-/

AZ_small abcdefghijklmnopqrstuvwxyz.-/

09 0123456789.-/+

AZ09 ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.-/+

https://docs.fab-image.com/5.3/studio/datatypes/OcrModel.html
https://docs.fab-image.com/5.3/studio/filters/OpticalCharacterRecognition/RecognizeCharacters.html

Next, character sorting order must be chosen. The default order is from left to right.

If the input text contains spaced characters, the value of inMinSpaceWidth input must be set. This value indicates the minimal distance between

two characters between which a space will be inserted.

Character recognition provides the following information:

1. the read text as a string (outCharacters),

2. an array of character recognition scores (outScores),

3. an array of recognition candidates for each character (outCandidates).

Interpreting results

The table below shows recognition results for characters extracted from the example image. An unrecognized character is colored in red.

In this example the letter P was not included in the training set. In effect, the OCR model was unable to recognize the representation of the P letter.

The internal classifier was trying to select most similar known character.

Verifying results

The results of the character recognition process can be validated using basic string manipulation filters.

The example below shows how to check if a read text contains a valid year value. The year value should be greater than 2012 (e.g. production

started in this year) and must not be greater than the current year.

Character presentation
Characters after

normalization
Description

The appropriate character size is
chosen.

The size of character is too small.

Too much information about a
character is lost because of too large
size has been selected .

Original
character

Recognized
character

Score
Candidates

(character and accuracy)

(outCharacters) (outScores) (outCandidates)

E E 1.00 E: 1.00

X X 1.00 X: 1.00

A A 1.00 A: 1.00

M M 1.00 M: 1.00

P R 0.50 R: 0.90 B: 0.40

L L 1.00 L: 1.00

E E 1.00 E: 1.00

Synthetic characters generated by means of a computer font.

Character samples acquired from a real usage.

For more complex validation a user defined filter is recommended. For further information read the documentation on creating user filters.

Preparation of the OCR models

An OCR model consists of an internal statistical tool called a classifier and a set of character data. There are two kinds of classifiers used to

recognize characters. The first classifier type is based on the multilayer perceptron classifier (MLP) and the second one uses support vector

machines (SVM). For further details please refer to the documentation of the MLP_Init and the SVM_Init filters. Each model must be trained before it

can be used.

The process of OCR model training consists of the following steps:

1. preparation of the training data set,

2. selection of the normalization size and character features,

3. setup of the OCR model,

4. training of the OCR model,

5. saving results to a file.

When these steps are performed, the model is ready to use.

Preparation of the training data set

Each classifier needs character samples in order to begin the training process.

To get the best recognition accuracy, the training character samples should be as

similar as possible to those which will be provided for recognition. There are two

possible ways to obtain sample characters: (1) extraction of characters from real

images or (2) generation of artificial characters using computer fonts.

In the perfect world the model should be trained using numerous real samples.

However, sometimes it can be difficult to gather enough real character samples. In

this case character samples should be generated by deforming the available

samples. A classifier which was trained on a not big enough data set can focus only

on familiar character samples at the same time failing to recognize slightly modified

characters.

Example operations which are used to create new character samples:

1. region rotation (using the RotateRegion filter),

2. shearing (ShearRegion),

3. dilatation and erosion (DilateRegion, ErodeRegion),

4. addition of a noise.

The set of character samples deformed by: the region rotation, morphological transforms, shearing and noises.

Note: Adding too many deformed characters to a training set will increase the training time of a model.

Note: Excessive deformation of character shape can result in classifier inability to recognize the learnt character base. For example: if the training

set contains a C character with too many noises, it can be mistaken for O character. In this case the classifier will be unable to determine the base

The short year value validation.

This example consists of two parts. In the first

part an input string is converted to an Integer

value. The second one checks if year number is

valid.

The filter ParseInteger was used to convert a

text into a number of the Integer type.

ParseInteger can return Nil value so

MergeDefault filter should be used to decide

what is a validation result when invalid year

number was provided.

Next, the year number is checked using a

formula. To get the current year the filter

CurrentDateTime is used. If all conditions are

met, the validation passes.

https://docs.fab-image.com/5.3/studio/datatypes/Integer.html
https://docs.fab-image.com/5.3/studio/filters/Integer/ParseInteger.html
https://docs.fab-image.com/5.3/studio/datatypes/Integer.html
https://docs.fab-image.com/5.3/studio/filters/Integer/ParseInteger.html
https://docs.fab-image.com/5.3/studio/filters/ConditionalProcessing/MergeDefault.html
https://docs.fab-image.com/5.3/studio/filters/Time/CurrentDateTime.html
https://docs.fab-image.com/5.3/studio/extensibility/CreatingUserFilters.html
https://docs.fab-image.com/5.3/studio/filters/MultilayerPerceptron/MLP_Init.html
https://docs.fab-image.com/5.3/studio/filters/SupportVectorMachines/SVM_Init.html
https://docs.fab-image.com/5.3/studio/filters/RegionSpatialTransforms/RotateRegion.html
https://docs.fab-image.com/5.3/studio/filters/RegionSpatialTransforms/ShearRegion.html
https://docs.fab-image.com/5.3/studio/filters/RegionMorphology/DilateRegion.html
https://docs.fab-image.com/5.3/studio/filters/RegionMorphology/ErodeRegion.html

of a newly provided character.

Each character sample must be stored in a structure of type CharacterSample. This structure consists of a character region and its textual

representation. To create an array of character samples use the MakeCharacterSamples filter.

Selection of normalization size and character features

The character normalization allows for reduction of the amount of data used in the character classification. The other aim of normalization is to

enable the classification process to recognize characters of various sizes.

During normalization each character is resized into a size which was provided during the model initialization. All further classifier operations will be

performed on the resized (normalized) characters.

Various size characters before and after the normalization process.

Selection of too large normalization size will increase training time of the OCR classifier. On the other hand, too low size will result in loss of

important character details. The selected normalization size should be a compromise between classification time and the accuracy of recognition.

For the best results, a character size after normalization should be similar to its size before normalization.

During the normalization process some character details will be lost, e.g. the aspect ratio of a character. In the training process, some additional

information can be added, which can compensate for the information loss in the normalization process. For further information please refer to the

documentation of the TrainOcr_MLP filter.

Training of the OCR model

There are two filters used to train each type of an OCR classifier. These filters require parameters which describe the classifier training process.

Saving the training results

After successful classifier training the results should be saved for future use. The filter SaveObject should be used.

Example: Reading numbers from masks

The purpose of this example is to read fields from ID cards. The input data is extracted from real cases. The example consists of two parts:

1. Creation of data set for classifier training is presented in "TrainCharacters" macrofilter.

2. This macrofilter is designed to acquire data from provided masks. It is implemented in the "Main" macrofilter.

The example project is available in Examples\Ocr Read Numbers directory.

Training the classifier

Training of MLP classifier using TrainOcr_MLP. Training of SVM classifier using TrainOcr_SVM.

First, this filter LoadImage loads the

character images from separate files. File

names are stored in a global parameter

called FileNames.

Next, each image is thresholded and the

character samples are made.

Then an MLP classifier is created.

After initialization the classifier is trained

using available character samples.

Finally, the created classifier is saved to a

file.

Macrofilter definition which performs OCR training.

https://docs.fab-image.com/5.3/studio/datatypes/CharacterSample.html
https://docs.fab-image.com/5.3/studio/filters/OpticalCharacterRecognition/MakeCharacterSamples.html
https://docs.fab-image.com/5.3/studio/filters/OpticalCharacterRecognition/TrainOcr_MLP.html
https://docs.fab-image.com/5.3/studio/filters/OpticalCharacterRecognition/TrainOcr_MLP.html
https://docs.fab-image.com/5.3/studio/filters/OpticalCharacterRecognition/TrainOcr_SVM.html
https://docs.fab-image.com/5.3/studio/filters/FileSystem/SaveObject.html
https://docs.fab-image.com/5.3/studio/filters/ImageIO/LoadImage.html
https://docs.fab-image.com/5.3/studio/user_interface/ProjectExplorer.html#GlobalParameters

Reading data from images

Macrofilter which uses the trained classifier to acquire text from images.

First, the example image is loaded from a file.

Next, the text is extracted from the

background by

ThresholdToRegion_Dynamic.

Then, the text is split into separated

characters with

SplitRegionIntoMultipleCharacters.

Finally, the characters are recognized.

https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdToRegion_Dynamic.html
https://docs.fab-image.com/5.3/studio/filters/OpticalCharacterRecognition/SplitRegionIntoMultipleCharacters.html

Camera Calibration and World Coordinates

Camera Calibration

Camera calibration, also known as camera resectioning, is a process of estimating parameters of a camera model: a set of parameters that

describe the internal geometry of image capture process. Accurate camera calibration is is essential for various applications, such as multi-camera

setups where images relate to each other, removing geometric distortions due to lens imperfections, or precise measurement of real-world

geometric properties (positions, distances, areas, straightness, etc.).

The model to be used is chosen depending on the camera type (e.g. projective camera, telecentric camera, line scan camera) and accuracy

requirements. In a case of a standard projective camera, the model (known as pinhole camera model) consists of focal length, principal point

location and distortion parameters.

A few distortion model types are supported. The simplest - divisional - supports most use cases and has predictable behaviour even when

calibration data is sparse. Higher order models can be more accurate, however they need a much larger dataset of high quality calibration points,

and are usually needed for achieving high levels of positional accuracy across the whole image - order of magnitude below 0.1 pix. Of course this is

only a rule of thumb, as each lens is different and there are exceptions.

The area scan camera models (pinhole or telecentric) contain only intrinsic camera parameters, and so it does not change with camera

repositioning, rotations, etc. Thanks to that, there is no need for camera calibration in the production environment, the camera can be calibrated

beforehand. As soon as the camera has been assembled with the lens and lens adjustments (zoom/focus/f-stop rings) have been tightly locked, the

calibration images can be taken and camera calibration performed. Of course any modifications to the camera-lens setup void the calibration

parameters, even apparently minor ones such as removing the lens and putting it back on the camera in seemingly the same position.

On the other hand the line scan model contains parameters of whole imaging setup, i.e. camera and a moving element (usually a conveyor belt).

Such approach, in contrast with area scan camera calibration, is necessary as the moving element of line scan camera system is tightly bound

within the image acquisition geometry.

Camera model can be directly used to obtain an undistorted image (an image, which would have been taken by a camera with the same basic

parameters, but without lens distortion present), however for most use cases the camera calibration is just a prerequisite to some other operation.

For example, when camera is used for inspection of planar surfaces (or objects lying on such surface), the camera model is needed to perform a

World Plane calibration (see World Plane - measurements and rectification section below).

In FabImage Studio user will be prompted by a GUI when a camera calibration is needed to be performed. Alternatively, filters responsible for camera

calibration may be used directly: CalibrateCamera_Pinhole, CalibrateCamera_Telecentric, CalibrateCamera_LineScan.

World Plane - Measurements and Rectification

Vision systems which are concerned with observation and inspection of planar (flat) surfaces, or objects lying on such surfaces (e.g. conveyor belts)

can take advantage of the image to world plane transform mechanism of FabImage Studio, which allows for:

Calculation of real world coordinates from locations on original image. This is crucial, for example, for interoperability with external devices,
such as industrial robots. Suppose a object is detected on the image, and its location needs to be transmitted to the robot. The detected object
location is given in image coordinates, however the robot is operating in real world with different coordinate system. A common coordinate
system is needed, defined by a world plane.

Image rectification onto the world plane. This is needed when performing image analysis using original image is not feasible (due to high
degree of lens and/or perspective distortion). The results of analysis performed on a rectified image can also be transformed to real-world
coordinates defined by a world plane coordinate system. Another use case is a multi-camera system – rectification of images from all the
cameras onto common world plane gives a simple and well defined relation between those rectified images, which allows for easy
superimposing or mosaic stitching.

The image below shows the image coordinate system. Image coordinates are denoted in pixels, with the origin point (0, 0) corresponding to the top-

left corner of the image. The X axis starts at the left edge of an image and goes towards the right edge. The Y axis starts at the top of the image

towards image bottom. All image pixels have nonnegative coordinates.

A set of grid pictures for basic calibration. Note that high accuracy applications require denser grids and higher amount of pictures. Also note

that all grids are perpendicular to the optical axis of the camera, so the focal length won't be calculated by the filter.

https://docs.fab-image.com/5.3/studio/filters/CameraCalibration/CalibrateCamera_Pinhole.html
https://docs.fab-image.com/5.3/studio/filters/CameraCalibration/CalibrateCamera_Telecentric.html
https://docs.fab-image.com/5.3/studio/filters/CameraCalibration/CalibrateCamera_LineScan.html

Directions and pixel positions in image coordinates.

The world plane is a distinguished flat surface, defined in the real 3D world. It may be arbitrarily placed with respect to the camera. It has a defined

origin position and XY axes.

Images below present the concept of a world plane. First image presents an original image, as captured by a camera that has not been mounted

quite straight above the object of interest. The second image presents a world plane, which has been aligned with the surface on which the object is

present. This allows for either calculation of world coordinates from pixel locations on original image, or image rectification, as shown on the next

images.

Object of interest as captured by an imperfectly positioned camera.

World plane coordinate system superimposed onto the original image.

In order to use the image to world plane transform mechanism of FabImage Studio, appropriate UI wizards are supplied:

For calculation of real world coordinates from locations on original image – use a wizard associated with the inTransform input of

ImagePointToWorldPlane filter (or other from ImageObjectsToWorldPlane group).

For image rectification onto the world plane – use a wizard associated with the inRectificationMap input of RectifyImage filter.

Although using UI wizards is the recommended course of action, the most complicated use cases may need a direct use of filters, in such a case

following steps are to be performed:

1. Camera calibration – this step is highly recommended to achieve accurate results, although not strictly necessary (e.g. when lens distortion
errors are insignificant).

2. World plane calibration – the CalibrateWorldPlane filters compute a RectificationTransform, which represents image to world plane relation

3. The image to world plane relation then can be used to:

Calculate of real world coordinates from locations on original image, and vice versa, see ImagePointToWorldPlane,
WorldPlanePointToImage or similar filters (from ImageObjectsToWorldPlane or WorldPlaneObjectsToImage groups).

Perform image rectification onto the world plane, see CreateRectificationMap filters.

There are different use cases of world coordinates calculation and image rectification:

Calculating world coordinates from pixel locations on original image without image rectification. This approach uses transformation output for
example by CalibrateWorldPlane to calculate real world coordinates with ImageObjectsToWorldPlane

Second scenario is very similar to the first one with the difference of using image rectification. In this case, after performing analysis on an
rectified image (i.e. image remapped by RectifyImage), the locations can be transformed to a common coordinate system given by the world
plane by using the rectified image to world plane relation. It is given by auxiliary output outRectifiedTransform of RectifyImage filter. Notice

that the rectified image to world plane relation is different than original image to world plane relation.

Last use case is to perform image rectification and rectified image analysis without its features recalculation to real world coordinates.

Notes:

Image to world plane transform is still a valid mechanism for telecentric cameras. Is such a case, the image would be related to world plane by
an affine transform.

Camera distortion is automatically accounted for in both world coordinate calculations and image rectification.

The spatial map generated by CreateRectificationMap filters can be thought of as a map performing image undistortion followed by a
perspective removal.

Extraction of Calibration Grids

Both camera calibration and image to world plane transform calculation use extracted calibration grids in the form of array of image points with grid

indices, i.e. annotated points.

Note that the real-world coordinates of the grids are 2D, because the relative coordinate of any point on the flat grid is .

FabImage Studio provides extraction filters for a few standard grid formats (see: DetectCalibrationGrid_Chessboard and

DetectCalibrationGrid_Circles).

Image to world plane coordinate calculation. Image rectification, with cropping to an area from point (0,0) to (5,5) in world

coordinates.

Example of taking world plane measurements on the rectified image. Left: original image, as captured by a camera, with mild lens distortion.

Right: rectified image with annotated length measurement.

https://docs.fab-image.com/5.3/studio/filters/CameraCalibration/ImagePointsToWorldPlane.html
https://docs.fab-image.com/5.3/studio/filters/CameraCalibration/ImagePointToWorldPlane.html
https://docs.fab-image.com/5.3/studio/filter_groups/ImageObjectsToWorldPlane.html
https://docs.fab-image.com/5.3/studio/filters/CameraCalibration/RectifyImage.html
https://docs.fab-image.com/5.3/studio/filters/CameraCalibration/RectifyImage.html
https://docs.fab-image.com/5.3/studio/filter_groups/CalibrateWorldPlane.html
https://docs.fab-image.com/5.3/studio/datatypes/RectificationTransform.html
https://docs.fab-image.com/5.3/studio/filters/CameraCalibration/ImagePointToWorldPlane.html
https://docs.fab-image.com/5.3/studio/filters/CameraCalibration/WorldPlanePointToImage.html
https://docs.fab-image.com/5.3/studio/filter_groups/ImageObjectsToWorldPlane.html
https://docs.fab-image.com/5.3/studio/filter_groups/WorldPlaneObjectsToImage.html
https://docs.fab-image.com/5.3/studio/filter_groups/CreateRectificationMap.html
https://docs.fab-image.com/5.3/studio/filter_groups/CalibrateWorldPlane.html
https://docs.fab-image.com/5.3/studio/filter_groups/ImageObjectsToWorldPlane.html
https://docs.fab-image.com/5.3/studio/filters/CameraCalibration/RectifyImage.html
https://docs.fab-image.com/5.3/studio/filters/CameraCalibration/RectifyImage.html
https://docs.fab-image.com/5.3/studio/filters/CameraCalibration/RectifyImage.html
https://docs.fab-image.com/5.3/studio/filter_groups/CreateRectificationMap.html
https://docs.fab-image.com/5.3/studio/filters/CameraCalibration/DetectCalibrationGrid_Chessboard.html
https://docs.fab-image.com/5.3/studio/filters/CameraCalibration/DetectCalibrationGrid_Circles.html

Using custom grids requires a custom solution for extracting the image point array. If the custom grid is a rectangular grid, the AnnotateGridPoints

filter may be used to compute annotations for the image points.

Note that the most important factor in achieving high accuracy results is the precision and accuracy of extracted calibration points. The calibration

grids should be as flat and stiff as possible (cardboard is not a proper backing material, thick glass is perfect). Take care of proper conditions when

taking the calibration images: minimize motion blur by proper camera and grid mounts, prevent reflections from the calibration surface (ideally use

diffusion lighting). When using a custom calibration grid, make sure that the points extractor can achieve subpixel precision. Verify that

measurements of the real-world grid coordinates are accurate. Also, when using a chessboard calibration grid, make sure that the whole calibration

grid is visible in the image. Otherwise, it will not be detected because the detection algorithm requires a few pixels wide quiet zone around the

chessboard. Pay attention to the number of columns and rows, as providing misleading data may make the algorithm work incorrectly or not work at

all.

The recommended calibration grid to use in FabImage Studio is a circles grid, see DetectCalibrationGrid_Circles. Optimal circle radius may vary

depending on exact conditions, however a good rule of thumb is 10 pixels (20 pixel diameter). Smaller circles tend to introduce positioning jitter.

Bigger circles lower the total amount of calibration points and suffer from geometric inaccuracies, especially when lens distortion and/or perspective

is noticeable. Note: it is important to use a symmetric board as shown in the image below. Asymmetric boards are currently not supported.

Please refer to Preparing Rectification Map Transform to get step-by-step instruction on how to perform calibration with the calibration editor (plugin).

Application Guide – Image Stitching

Seamless image stitching in multiple camera setup is, in its essence, an image rectification onto the world plane.

Note that high quality stitching requires a vigilant approach to the calibration process. Each camera introduces both lens distortion as well as

perspective distortion, as it is never positioned perfectly perpendicular to the analyzed surface. Other factors that need to be taken into account are

the camera-object distance, camera rotation around the optical axis, and image overlap between cameras.

The process consists of two main steps. First, each camera is calibrated to produce a partial, rectified image. Then all partial images are simply

merged using the JoinImages filter.

Image stitching procedure can be outlined as follows:

Cover the inspection area with two or more cameras. Make sure that fields of view of individual cameras overlap a bit.

Place a calibration grid onto the inspection area. For each camera, capture the image of a part of the calibration grid. The grid defines a world
coordinate system used for stitching, and so it should contain some markers from which the coordinates of world plane points will be
identifiable for each camera.

Symmetric circle grid is the recommended one to use in FabImage Studio. Unsupported asymmetric circle grid.

Detected chessboard grid, with image point array marked.

https://docs.fab-image.com/5.3/studio/filters/CameraCalibration/AnnotateGridPoints.html
https://docs.fab-image.com/5.3/studio/filters/CameraCalibration/DetectCalibrationGrid_Circles.html
https://docs.fab-image.com/5.3/studio/user_interface/PreparingCalibrationMap.html
https://docs.fab-image.com/5.3/studio/filters/ImageSpatialTransforms/JoinImages.html

Define the world coordinate extents for which each camera will be responsible. For example, lets define that camera 1 should cover area from
100 to 200 in X, and from -100 to 100 in Y coordinate; camera 2 - from 200 to 300 in X, and from -100 to 100 in Y.

For each camera, use a wizard associated with the inRectificationMap input of RectifyImage filter to setup the image rectification. Use the

captured image for camera calibration and world to image transform. Use the defined world coordinate extents to setup the rectification map
generation (select "world bounding box" mode of operation). Make sure that the world scale for rectification is set to the same fixed value for all
images.

Use the JoinImages appropriately to merge outputs of RectifyImage filters.

Please refer to the Image stitching tutorial for more.

A multi-camera setup for inspection of a flat object.

Stitching result.

Input images, as captured by cameras.

https://docs.fab-image.com/5.3/studio/filters/CameraCalibration/RectifyImage.html
https://docs.fab-image.com/5.3/studio/filters/CameraCalibration/RectifyImage.html
https://docs.fab-image.com/5.3/studio/filters/ImageSpatialTransforms/JoinImages.html
https://docs.fab-image.com/5.3/studio/filters/CameraCalibration/RectifyImage.html
https://docs.fab-image.com/5.3/studio/tutorial/image_stitching.html

Golden Template

Golden Template technique performs a pixel-to-pixel comparison of two images. This technique is especially useful when the object's surface or

object's shape is very complex.

FabImage Studio offers three ways of performing the golden template comparison.

Comparison based on pixels intensity - it can be achieved using the CompareGoldenTemplate_Intensity. In this method two images are

compared pixel-by-pixel and the defect is classified based on a difference between pixels intensity. This technique is especially useful in finding

defects like smudges, scratches etc.

Example usage of Golden Template technique using the pixels intensity based comparison.

Comparison based on objects edges - this method is very useful when defects may occur on the edge of the object and pixel comparison

may fail due to different light reflections or the checking the object surface is not necessary. For matching object's edges use the

CompareGoldenTemplate_Edges filter.

Example usage of Golden Template technique using the edges comparison.

Second version of the comparison based on objects edges - this method uses more than one image to create the model for the

inspection. Due to that it is not vulnerable to pixel-sized errors and displacements. Advanced tips on how to use its parameters are located

here: CompareGoldenTemplate2.

How To Use

Golden template is a previously prepared image which is used to compare image from the camera. This robust technique allows us to perform quick

comparison inspection but some conditions must be met:

stable light conditions,

position of the camera and the object must be still,

precise object positioning

Most applications use the Template Matching technique for finding objects and then matched rectangle is compared. Golden template image and

image to compare must have this same dimensions. To get best results filter CropImageToRectangle should be used. Please notice that filter

CropImageToRectangle performs cropping using a real values and it has sub-pixel precision.

Example

Example below shows how to use a basic golden template matching.

Example application performs following operations

1. Finding object location using the Template Matching technique.

2. Comparing input image with previously prepared golden template.

Golden template Defected object Found defects

Golden template Defected object Found defects

https://docs.fab-image.com/5.3/studio/filters/ImageAnalysis/CompareGoldenTemplate_Intensity.html
https://docs.fab-image.com/5.3/studio/filters/ImageAnalysis/CompareGoldenTemplate_Edges.html
https://docs.fab-image.com/5.3/studio/filters/ImageAnalysis/CompareGoldenTemplate2.html
https://docs.fab-image.com/5.3/studio/machine_vision_guide/TemplateMatching.html
https://docs.fab-image.com/5.3/studio/filters/ImageSpatialTransforms/CropImageToRectangle.html
https://docs.fab-image.com/5.3/studio/filters/ImageSpatialTransforms/CropImageToRectangle.html
https://docs.fab-image.com/5.3/studio/machine_vision_guide/TemplateMatching.html

Deep Learning

Table of contents:

1. Introduction

Overview of Deep Learning Tools

Basic Terminology

Stopping Conditions

Preprocessing

Augmentation

2. Anomaly Detection

3. Feature Detection

4. Object Classification

5. Instance Segmentation

6. Point Location

7. Object Location

8. Reading Characters

9. Troubleshooting

1. Introduction

Deep Learning is a breakthrough machine learning technique in computer vision. It learns from training images provided by the user and can

automatically generate solutions for a wide range of image analysis applications. Its key advantage, however, is that it is able to solve many of the

applications which have been too difficult for traditional, rule-based algorithms of the past. Most notably, these include inspections of objects with high

variability of shape or appearance, such organic products, highly textured surfaces or natural outdoor scenes. What is more, when using ready-

made products, such as our FabImage Deep Learning, the required programming effort is reduced almost to zero. On the other hand, deep learning

is shifting the focus to working with data, taking care of high quality image annotations and experimenting with training parameters – these elements

actually tend to take most of the application development time these days.

Typical applications are:

detection of surface and shape defects (e.g. cracks, deformations, discoloration),

detecting unusual or unexpected samples (e.g. missing, broken or low-quality parts),

identification of objects or images with respect to predefined classes (i.e. sorting machines),

location, segmentation and classification of multiple objects within an image (i.e. bin picking),

product quality analysis (including fruits, plants, wood and other organic products),

location and classification of key points, characteristic regions and small objects,

optical character recognition.

The use of deep learning functionality includes two stages:

1. Training – generating a model based on features learned from training samples,

2. Inference – applying the model on new images in order to perform the actual machine vision task.

The difference to the traditional image analysis approach is presented in the diagrams below:

Traditional approach: The algorithm must be designed by a human specialist.

Machine learning approach: We only need to provide a training set of labeled images.

Overview of Deep Learning Tools

1. Anomaly Detection – this technique is used to detect anomalous (unusual or unexpected) samples. It only needs a set of fault-free samples

to learn the model of normal appearance. Optionally, several faulty samples can be added to better define the threshold of tolerable variations.
This tool is useful especially in cases where it is difficult to specify all possible types of defects or where negative samples are simply not
available. The output of this tool are: a classification result (normal or faulty), an abnormality score and a (rough) heatmap of anomalies in the
image.

An example of a missing object detection using DL_DetectAnomalies2 tool.

Left: The original image with a missing element. Right: The classification result with a heatmap of anomalies.

2. Feature Detection (segmentation) – this technique is used to precisely segment one or more classes of pixel-wise features within an

image. The pixels belonging to each class must be marked by the user in the training step. The result of this technique is an array of probability
maps for every class.

An example of image segmentation using DL_DetectFeatures tool.

Left: The original image of the fundus. Right: The segmentation of blood vessels.

3. Object Classification – this technique is used to identify an object in a selected region with one of user-defined classes. First, it is necessary

to provide a training set of labeled images. The result of this technique is: the name of detected class and a classification confidence level.

An example of object classification using DL_ClassifyObject tool.

4. Instance Segmentation – this technique is used to locate, segment and classify one or multiple objects within an image. The training requires

the user to draw regions corresponding to objects in an image and assign them to classes. The result is a list of detected objects – with their
bounding boxes, masks (segmented regions), class IDs, names and membership probabilities.

https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectAnomalies2.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectFeatures.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_ClassifyObject.html

An example of instance segmentation using DL_SegmentInstances tool. Left: The original image. Right: The resulting list of detected objects.

5. Point Location – this technique is used to precisely locate and classify key points, characteristic parts and small objects within an image. The

training requires the user to mark points of appropriate classes on the training images. The result is a list of predicted point locations with
corresponding class predictions and confidence scores.

An example of point location using DL_LocatePoints tool. Left: The original image. Right: The resulting list of detected points.

6. Reading Characters – this technique is used to locate and recognize characters within an image. The result is a list of found characters.

An example of optical character recognition using DL_ReadCharacters tool. Left: The original image. Right: The image with the recognized

characters drawn.

Basic Terminology

You do not need to have the specialistic scientific knowledge to develop your deep learning solutions. However, it is highly recommended to

understand the basic terminology and principles behind the process.

Deep neural networks

FabImage provides access to several standardized deep neural networks architectures created, adjusted and tested to solve industrial machine

vision tasks. Each of the networks is a set of trainable convolutional filters and neural connections which can model complex transformations of an

image with the goal to extract relevant features and use them to solve a particular problem. However, these networks are useless without proper

amount of good quality data provided for training process. This documentation presents necessary practical hints on creating an effective deep

learning model.

Depth of a neural network

Due to various levels of task complexity and different expected execution times, the users can choose one of five available network depths. The

Network Depth parameter is an abstract value defining the memory capacity of a neural network (i.e. the number of layers and filters) and the ability

to solve more complex problems. The list below gives hints about selecting the proper depth for a task characteristics and conditions.

https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_SegmentInstances.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_LocatePoints.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_ReadCharacters.html

1. Low depth (value 1-2)

A problem is simple to define.

A problem could be easily solved by a human inspector.

A short time of execution is required.

Background and lighting do not change across images.

Well-positioned objects and good quality of images.

2. Standard depth (default, value 3)

Suitable for a majority of applications without any special conditions.

A modern CUDA-enabled GPU is available.

3. High depth (value 4-5)

A big amount of training data is available.

A problem is hard or very complex to define and solve.

Complicated irregular patterns across images.

Long training and execution times are not a problem.

A large amount of GPU RAM (≥4GB) is available.

Varying background, lighting and/or positioning of objects.

Tip: Test your solution with a lower depth first, and then increase it if needed.

Note: A higher network depth will lead to a significant increase in memory and computational complexity of training and execution.

Training process

Model training is an iterative process of updating neural network weights based on the training data. One iteration involves some number of steps

(determined automatically), each step consists of the following operations:

1. selection of a small subset (batch) of training samples,

2. calculation of an error measure for these samples,

3. updating the weights to achieve lower error for these samples.

At the end of each iteration, the current model is evaluated on a separate set of validation samples selected before the training process. Validation

set is automatically chosen from the training samples. It is used to simulate how neural network would work with real images not used during

training. Only the set of network weights corresponding with the best validation score at the end of training is saved as the final solution. Monitoring

the training and validation score (blue and orange lines in the figures below) in consecutive iterations gives fundamental information about the

progress:

1. Both training and validation scores are improving – keep training, the model can still improve.

2. Both training and validation scores has stopped improving – keep training for a few iterations more and stop if there is still no change.

3. Training score is improving, but validation score has stopped or is going worse – you can stop training, model has probably started overfitting
to your training data (remembering exact samples rather than learning rules about features). It may also be caused by too small amount of
diverse samples or too low complexity of the problem for a network selected (try lower Network Depth).

The above graphs represent training progress in the Deep Learning Editor. The blue line indicates performance on the training samples, and the

orange line represents performance on the validation samples. Please note the blue line is plotted more frequently than the orange line as validation

performance is verified only at the end of each iteration.

Stopping Conditions

The user can stop the training manually by clicking the Stop button. Alternatively, it is also possible to set one or more stopping conditions:

1. Iteration Count – training will stop after a fixed number of iterations.

2. Iterations without Improvement – training will stop when the best validation score was not improved for a given number of iterations.

3. Time – training will stop after a given number of minutes has passed.

4. Validation Accuracy or Validation Error – training will stop when the validation score reaches a given value.

Preprocessing

To adjust performance to a particular task, the user can apply some additional transformations to the input images before training starts:

An example of correct training. A graph characteristic for network overfitting.

1. Downsample – reduction of the image size to accelerate training and execution times, at the expense of lower level of details possible to

detect. Increasing this parameter by 1 will result in downsampling by the factor of 2 over both image dimension.

2. Convert to Grayscale – while working with problems where color does not matter, you can choose to work with monochrome versions of

images.

Augmentation

In case when the number of training images can be too small to represent all possible variations of samples, it is recommended to use data

augmentations that add artificially modified samples during training. This option will also help avoiding overfitting.

Below is a description of the available augmentations and examples of the corresponding transformations:

1. Luminance – change brightness of samples by a random percentage (between -ParameterValue and +ParameterValue) of pixel values (0-

255). For a given augmentation values, samples as below can be added to the training set.

2. Noise – modify samples with uniform noise. Value of each channel and pixel is modified separately, by random percentage (between -

ParameterValue and +ParameterValue) of pixel values (0-255). Please note that choosing an appropriate augmentation value should depend
on the size of the feature in pixels. Larger value will have a much greater impact on small objects than on large objects. For a tile with the
feature "F" with the size of 130x130 pixels and a given augmentation values, samples as below can be added to the training set.:

3. Gaussian Blur – blur samples with a kernel of a size randomly selected between 0 and the provided maximum kernel size. Please note that

choosing an appropriate Gaussian Blur Kernel Size should depend on the size of the feature in pixels. Larger kernel sizes will have a much
greater impact on small objects than on large objects. For a tile with the feature "F" with the size of 130x130 pixels and a given augmentation
values, samples as below can be added to the training set.:

4. Rotation – rotate samples by a random angle between -ParameterValue and +ParameterValue. Measured in degrees.

In Detect Features, Locate Points and Detect Anomalies, for a tile with the feature "F" and given augmentation values, samples as below can

be added to the training set.

In Classify Object and Segment Instances, for an image with the feature "F" and given augmentation values, samples as below can be added

to the training set.

5. Flip Up-Down – reflect samples along the X axis.

Luminance=-50. Luminance=-25. Original image. Luminance=25. Luminance=50.

Original grayscale

image.

Grayscale image.

Noise=4.

Grayscale image.

Noise=10.

Grayscale image.

Noise=25.

Grayscale image.

Noise=50.

Original RGB image. RGB image. Noise=4. RGB image. Noise=10. RGB image. Noise=25. RGB image. Noise=50.

Original image. Gaussian Blur=5. Gaussian Blur=10. Gaussian Blur=25. Gaussian Blur=50.

Tile rotation=-45°. Tile rotation=-20°. Original tile. Tile rotation=20°. Tile rotation=45°.

Image rotation=-45°. Image rotation=-20°. Original image. Image rotation=20°. Image rotation=45°.

6. Flip Left-Right – reflect samples along the Y axis.

7. Relative Translation – translate samples by a random shift, defined as a percentage (between -ParameterValue and +ParameterValue) of

the tile (in Detect Features, Locate Points and Detect Anomalies) or the image size (in Classify Object and Segment Instances). Works
independently in both X and Y dimensions.

In Detect Features, Locate Points and Detect Anomalies, for a tile with the feature "F" and given augmentation values, samples as below can

be added to the training set.

In Classify Object and Segment Instances, for an image with the feature "F" and given augmentation values, samples as below can be added

to the training set.

8. Scale – resize samples relatively to their original size by a random percentage between the provided minimum scale and maximum scale.

9. Horizontal Shear – shear samples horizontally by an angle between -ParameterValue and +ParameterValue. Measured in degrees.

In Detect Features, Locate Points and Detect Anomalies, for a tile with the feature "F" and given augmentation values, samples as below can

be added to the training set.

In Classify Object and Segment Instances, for an image with the feature "F" and given augmentation values, samples as below can be added

to the training set.

10. Vertical Shear – analogous to Horizontal Shear.

In Detect Features, Locate Points, and Detect Anomalies, for a tile with the feature "F" and given augmentation values, samples as below can

be added to the training set.

No flips. Up-Down flip. Left-Right flip. Both flips.

Tile translation x=20%, y=20%. Original tile. Tile translation x=-20%, y=-20%.

Image translation x=20%, y=20%. Original image. Image translation x=-20%, y=-20%.

Resize=50%. Original image. Resize=150%.

Horizontal Shear=-30. Original tile. Horizontal Shear=30.

Horizontal Shear=-30. Original image. Horizontal Shear=30.

In Classify Object and Segment Instances, for an image with the feature "F" and given augmentation values, samples as below can be added

to the training set.

Warning: the choice of augmentation options depends only on the task we want to solve. Sometimes they might be harmful for quality of a solution.

For a simple example, the Rotation should not be enabled if rotations are not expected in a production environment. Enabling augmentations also

increases the network training time (but does not affect execution time!)

2. Anomaly Detection

FabImage Deep Learning provides three ways of defect detection:

DL_DetectAnomalies1

DL_DetectAnomalies2 Single Class

DL_DetectAnomalies2 Golden Template

The DL_DetectAnomalies1 (reconstructive approach) uses deep neural networks to remove defects from the input image by reconstructing the

affected regions. It is used to analyze images in fragments of size determined by the Feature Size parameter.

This approach is based on reconstructing an image without defects and then comparing it with the original one. It filters out all patterns smaller than

Feature Size that were not present in the training set.

The DL_DetectAnomalies2 Single Class uses a simpler algorithm than Golden Template. It uses less space and the iteration time is shorter. It can

be used with less complex objects.

The DL_DetectAnomalies2 Golden Template is an appropriate method for positioned objects with complex details. The tool divides the images into

regions and creates a separate model for each region. The tool has the Texture Mode dedicated for texture defects detection. It can be used for

plain surfaces or the ones with a simple pattern.

To sum up, while choosing the tool for anomaly detection, first check the Golden Template with the Texture Mode on or off, depending on the

object's kind. If the model takes too much space or the iteration is too long, please try the Single Class tool. If the object is complex and its position

is unstable, please check the DL_DetectAnomalies1 approach.

An example of textile defect detection using the DL_DetectAnomalies2.

Parameters

Feature Size is related to DL_DetectAnomalies1 and DL_DetectAnomalies2 Single Class approach. It corresponds to the expected defect

size and it is the most significant one in terms of both quality and speed of inspection. It it is represented by a green square in the Image
window of the Editor. The common denominator of all fragment based approaches is that the Feature Size should be adjusted so that it
contains common defects with some margin.
For DL_DetectAnomalies1 large Feature Size will cause small defects to be ignored, however the inference time will be shortened
considerably. Heatmap precision will also be lowered. For DL_DetectAnomalies2 Single Class large Feature Size increases training as well

as inference time and memory requirements. Consider using Downscale parameter instead of increasing the Feature Size.

Vertical Shear=-30. Original tile. Vertical Shear=30.

Vertical Shear=-30. Original image. Vertical Shear=30.

https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectAnomalies1.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectAnomalies2.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectAnomalies2.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectAnomalies1.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectAnomalies2.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectAnomalies2.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectAnomalies1.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectAnomalies2.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectAnomalies1.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectAnomalies2.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectAnomalies1.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectAnomalies2.html

Sampling Density is related to DL_DetectAnomalies1 and DL_DetectAnomalies2 Single Class approach. It controls the spatial resolution of

both training and inspection. The higher the density the more precise results but longer computational time. It is recommended to use the Low
density only for well positioned and simple objects. The High density is useful when working with complex textures and highly variable objects.

Max Translation is related to DL_DetectAnomalies2 Golden Template approach. It is the maximal position change tolerance. If the

parameter increases, the working area of a small model enlarges and the number of the created small models decreases.

Model Complexity is related to DL_DetectAnomalies2 Golden Template and DL_DetectAnomalies2 Texture approach. Greater value may

improve model effectiveness, especially for complex objects, at the expense of memory usage and interference time.

Metrics

Measuring accuracy of anomaly detection tools is a challenging task. The most straightforward approach is to calculate the Recall/Precision/F1

measures for the whole images (classified as GOOD or BAD, without looking at the locations of the anomalies). Unfortunately, such an approach is

not very reliable due to several reasons, including: (1) when we have a limited number of test images (like 20), the scores will vary a lot (like Δ=5%)

when just one case changes; (2) very frequently the tools we test will find random false anomalies, but will not find the right ones - and still will get

high scores as the image as a whole is considered correctly classified. Thus, it may be tempting to use annotated anomaly regions and calculate the

per-pixel scores. However, this would be too fine-grained. For anomaly detection tasks we do not expect the tools to be necessarily very accurate in

terms of the location of defects. Individual pixels do not matter much. Instead, we expect that the anomalies are detected "more or less" at the right

locations. As a matter of fact, some tools which are not very accurate in general (especially those based on auto-encoders) will produce relatively

accurate outlines for the anomalies they find, while the methods based on one-class classification will usually perform better in general, but the

outlines they produce will be blurred, too thin or too thick.

For these reasons, we introduced an intermediate approach to calculation of Recall. Instead of using the per-image or the per-pixel methods, we use

a per-region one. Here is how we calculate Recall:

For each anomaly region we check if there is any single pixel in the heatmap above the threshold. If it is, we increase TP (the number of True

Positives) by one. Otherwise, we increase FN (the number of False Negatives) by one.

Then we use the formula:

The above method works for Recall, but cannot be directly applied to the calculation of Precision. Thus, for Precision we use a per-pixel approach,

but it also comes with its own difficulties. First issue is that we often find ourselves having a lot of GOOD samples and a very limited set of BAD

testing cases. This means unbalanced testing data, which in turn means that the Precision metric is highly affected with the overwhelming quantity

of GOOD samples. The more GOOD samples we have (at the same amount of BAD samples), the lower Precision will be. It may be actually very

low, often not reflecting the true performance of the tool. For that reason, we need to incorporate balancing into our metrics.

A second issue with Precision in real-world projects is that False Positives tend to naturally occur within BAD images, outside of the marked

anomaly regions. This happens for several reasons, but is repeatable among different projects. Sometimes if there is a defect, it often means that

something was broken and other parts of the object may be slightly affected too, sometimes in a visible way, sometimes with a level of ambiguity.

And quite often the objects under inspection simply get affected by the process of artificially introducing defects (like someone is touching a piece of

fabric and accidentally causes wrinkles that would normally not occur). For this reason, we calculate the per-pixel False Negatives only on GOOD

images.

The complete procedure for calculation of Precision is:

We calculate the average pp_TP (the number of per-pixel True Positives) across all BAD testing samples.

We calculate the average pp_FP (the number of per-pixel False Positives) across all GOOD testing samples.

Then we use the formula:

Finally we calculate the F1 score in the standard way, for practical reasons neglecting the fact that the Recall and Precision values that we unify

were calculated in different ways. We believe that this metric is best for practical applications.

Model Usage

In Detect Anomalies 1 variant, a model should be loaded with DL_DetectAnomalies1_Deploy prior to executing it with DL_DetectAnomalies1.

Alternatively, the model can be loaded directly by DL_DetectAnomalies1 filter, but it will then require time-consuming initialization in the first program

iteration.

In Detect Anomalies 2 variant, a model should be loaded with DL_DetectAnomalies2_Deploy prior to executing it with DL_DetectAnomalies2.

Alternatively, model can be loaded directly by DL_DetectAnomalies2 filter, but it will then require time-consuming initialization in the first program

iteration.

Running FabImage Deep Learning Service simultaneously with these filters is discouraged as it may result in degraded performance or errors.

3. Feature Detection (segmentation)

This technique is used to detect pixel-wise regions corresponding to defects or – in a general sense – to any image features. A feature here may be
also something like the roads on a satellite image or an object part with a characteristic surface pattern. Sometimes it is also called pixel labeling as
it assigns a class label to each pixel, but it does not separate instances of objects.

https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectAnomalies1.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectAnomalies2.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectAnomalies2.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectAnomalies2.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectAnomalies2.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectAnomalies1_Deploy.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectAnomalies1.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectAnomalies1.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectAnomalies2_Deploy.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectAnomalies2.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectAnomalies2.html

Training Data

Images loaded to the Editor of DL_DetectFeatures can be of different sizes and can have different ROIs defined. However, it is important to ensure

that the scale and the characteristics of the features are consistent with that of the production environment.

The features can be marked using an intuitive interface in the Editor or can be imported as masks from a file.

Each and every feature should be marked on all training images, or the ROI should be limited to include only marked defects. Incompletely or

inconsistently marked features are one of the main reasons of poor accuracy. REMEMBER: If you leave even a single piece of some feature not

marked, it will be used as a negative sample and this will highly confuse the training process!

The marking precision should be adjusted to the application requirements. The more precise marking the better accuracy in the production

environment. While marking with low precision it is better to mark features with some excess margin.

Multiple classes of features

It is possible to detect many classes of features separately using one model. For example, road and building like in the image below. Different

features may overlap but it is usually not recommended. Also, it is not recommended to define more than a few different classes in a single model.

On the other hand, if there are two features that may be mutually confusing (e.g. roads and rivers), it is recommended to have separate classes for

them and mark them, even if one of the classes is not really needed in the results. Having the confusing feature clearly marked (and not just left as

the background), the neural network will focus better on avoiding misclassification.

An example of marking two different classes (red roads and yellow buildings) in the one image.

Patch Size

Detect Features is an end-to-end segmentation tool which works best when analysing an image in a medium-sized square window. The size of this

window is defined by the Patch Size parameter. It should be not too small, and not too big. Typically much bigger than the size (width or diameter) of

the feature itself, but much less than the entire image. In a typical scenario the value of 96 or 128 works quite well.

Performance Tip 1: a larger Patch Size increases the training time and requires more GPU memory and more training samples to operate

effectively. When Patch Size exceeds 128 pixels and still looks too small, it is worth considering the Downsample option.

Performance Tip 2: if the execution time is not satisfying you can set the inOverlap filter input to False. It should speed up the inspection by 10-30%

at the expense of less precise results.

An example of wood knots marked with low precision. An example of tile cracks marked with high precision.

https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectFeatures.html

Examples of Patch Size: too large or too small (red), maybe acceptable (yellow) and good (green). Remember that this is just an example and may

vary in other cases.

Model Usage

A model should be loaded with DL_DetectFeatures_Deploy filter before using DL_DetectFeatures filter to perform segmentation of features.

Alternatively, the model can be loaded directly by DL_DetectFeatures filter, but it will result in a much longer time of the first iteration.

Running FabImage Deep Learning Service simultaneously with these filters is discouraged as it may result in degraded performance or errors.

Parameters:

To limit the area of image analysis you can use inRoi input.

To shorten feature segmentation process you can disable inOverlap option. However, in most cases, it decreases segmentation quality.

Feature segmentation results are passed in a form of bitmaps to outHeatmaps output as an array and outFeature1, outFeature2,

outFeature3 and outFeature4 as separate images.

4. Object Classification

This technique is used to identify the class of an object within an image or within a specified region.

The Principle of Operation

During the training phase, the object classification tool learns representation of user defined classes. The model uses generalized knowledge gained

from samples provided for training, and aims to obtain good separation between the classes.

Result of classification after training.

After a training process is completed, the user is presented with a confusion matrix. It indicates how well the model separated the user defined

classes. It simplifies identification of model accuracy, especially when a large number of samples has been used.

Confusion matrix presents correct (diagonal) and incorrect assignment of samples to the user defined classes.

Training Parameters

In addition to the default training parameters (list of parameters available for all Deep Learning algorithms), the DL_ClassifyObject tool provides a

Detail Level parameter which enables control over the level of detail needed for a particular classification task. For majority of cases the default

value of 1 is appropriate, but if images of different classes are distinguishable only by small features (e.g. granular materials like flour and salt),

increasing value of this parameter may improve classification results.

Model Usage

A model should be loaded with DL_ClassifyObject_Deploy filter before using DL_ClassifyObject filter to perform classification. Alternatively, model

can be loaded directly by DL_ClassifyObject filter, but it will result in a much longer time of the first iteration.

https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectFeatures_Deploy.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectFeatures.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectFeatures.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectFeatures.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectFeatures.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectFeatures.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectFeatures.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectFeatures.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectFeatures.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_DetectFeatures.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_ClassifyObject.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_ClassifyObject_Deploy.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_ClassifyObject.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_ClassifyObject.html

Running FabImage Deep Learning Service simultaneously with these filters is discouraged as it may result in degraded performance or errors.

Parameters:

To limit the area of image analysis you can use inRoi input.

Classification results are passed to outClassName and outClassIndex outputs.

The score value outScore indicates the confidence of classification.

5. Instance Segmentation

This technique is used to locate, segment and classify one or multiple objects within an image. The result of this technique are lists with elements

describing detected objects – their bounding boxes, masks (segmented regions), class IDs, names and membership probabilities.

Note that in contrary to feature detection technique, instance segmentation detects individual objects and may be able to separate them even if they

touch or overlap. On the other hand, instance segmentation is not an appropriate tool for detecting features like scratches or edges which may

possibly have no object-like boundaries.

Training Data

The training phase requires the user to draw regions corresponding to objects on an image and assign them to classes.

Editor for marking objects.

Training Parameters

Instance segmentation training adapts to the data provided by the user and does not require any additional training parameters besides the default

ones.

Original image. Visualized instance segmentation results.

https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_ClassifyObject.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_ClassifyObject.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_ClassifyObject.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_ClassifyObject.html

Model Usage

A model should be loaded with DL_SegmentInstances_Deploy filter before using DL_SegmentInstances filter to perform classification. Alternatively,

model can be loaded directly by DL_SegmentInstances filter, but it will result in a much longer time of the first iteration.

Running FabImage Deep Learning Service simultaneously with these filters is discouraged as it may result in degraded performance or errors.

Parameters:

To limit the area of image analysis you can use inRoi input.

To set minimum detection score inMinDetectionScore parameter can be used.

Maximum number of detected objects on a single image can be set with inMaxObjectsCount parameter. By default it is equal to the

maximum number of objects in the training data.

Results describing detected objects are passed to following outputs:

bounding boxes: outBoundingBoxes,

class IDs: outClassIds,

class names: outClassNames,

classification scores: outScores,

masks: outMasks.

6. Point Location

This technique is used to precisely locate and classify key points, characteristic parts and small objects within an image. The result of this technique

is a list of predicted point locations with corresponding class predictions and confidence scores.

When to use point location instead of instance segmentation:

precise location of key points and distinctive regions with no strict boundaries,

location and classification of objects (possibly very small) when their segmentation masks and bounding boxes are not needed (e.g. in object
counting).

When to use point location instead of feature detection:

coordinates of key points, centroids of characteristic regions, objects etc. are needed.

Training Data

The training phase requires the user to mark points of appropriate classes on the training images.

Original image. Visualized point location results.

https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_SegmentInstances_Deploy.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_SegmentInstances.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_SegmentInstances.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_SegmentInstances.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_SegmentInstances.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_SegmentInstances.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_SegmentInstances.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_SegmentInstances.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_SegmentInstances.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_SegmentInstances.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_SegmentInstances.html

Editor for marking points.

Feature Size

In the case of the Point Location tool, the Feature Size parameter corresponds to the size of an object or characteristic part. If images contain

objects of different scales, it is recommended to use a Feature Size slightly larger than the average object size, although it may require

experimenting with different values to achieve the best possible results.

Performance tip: a larger feature size increases the training time and needs more memory and training samples to operate effectively. When feature

size exceeds 64 pixels and still looks too small, it is worth considering the Downsample option.

Model Usage

A model should be loaded with DL_LocatePoints_Deploy filter before using DL_LocatePoints filter to perform point location and classification.

Alternatively, model can be loaded directly by DL_LocatePoints filter, but it will result in a much longer time of the first iteration.

Running FabImage Deep Learning Service simultaneously with these filters is discouraged as it may result in degraded performance or errors.

Parameters:

To limit the area of image analysis you can use inRoi input.

To set minimum detection score inMinDetectionScore parameter can be used.

inMinDistanceRatio parameter can be used to set minimum distance between two points to be considered as different. The distance is

computed as MinDistanceRatio * FeatureSize. If the value is not enabled, the minimum distance is based on the training data.

To increase detection speed but with potentially slightly worse precision inOverlap can be set to False.

Results describing detected points are passed to following outputs:

point coordinates: outLocations,

class IDs: outClassIds,

class names: outClassNames,

classification scores: outScores.

7. Locating objects

This technique is used to locate and classify one or multiple objects within an image. The result of this technique is a list of rectangles bounding the

predicted objects with corresponding class predictions and confidence scores.

The tool returns the rectangle region containing the predicted objects and showing their approximate location and orientation , but it doesn't return the

precise position of the key points of the object or the segmented region. It is an intermediate solution between the Point Location and the Instance

Segmentation.

https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_LocatePoints_Deploy.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_LocatePoints.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_LocatePoints.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_LocatePoints.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_LocatePoints.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_LocatePoints.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_LocatePoints.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_LocatePoints.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_LocatePoints.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_LocatePoints.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_LocatePoints.html

Training Data

The training phase requires the user to mark rectangles bounding objects of appropriate classes on the training images.

Editor for marking objects.

Model Usage

A model should be loaded with DL_LocateObjects_Deploy filter before using DL_LocateObjects filter to perform object location and classification.

Alternatively, model can be loaded directly by DL_LocateObjects filter, but it will result in a much longer time of the first iteration.

Running FabImage Deep Learning Service simultaneously with these filters is discouraged as it may result in degraded performance or errors.

Parameters:

To limit the area of image analysis you can use inRoi input.

To set minimum detection score inMinDetectionScore parameter can be used.

Results describing detected objects are passed to the object output: outObjects.

Original image.

Visualized object location results.

https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_LocateObjects_Deploy.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_LocateObjects.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_LocateObjects.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_LocateObjects.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_LocateObjects.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_LocateObjects.html

8. Reading Characters

This technique is used to locate and recognize characters within an image. The result is a list of found characters.

This tool uses the pretrained model and cannot be trained.

Model Usage

A model should be loaded with DL_ReadCharacters_Deploy filter before using DL_ReadCharacters filter to perform recognition. Alternatively, model

can be loaded directly by DL_ReadCharacters filter, but it will result in a much longer time of the first iteration.

Running FabImage Deep Learning Service simultaneously with these filters is discouraged as it may result in degraded performance or errors.

Parameters:

To limit the area of the image analysis and/or to set a text orientation you can use inRoi input.

The average size (in pixels) of characters in the analysed area should be set with inCharHeight parameter.

To improve a performance with a font with exceptionally thin or wide characters you can use inWidthScale input. To some extent, it may also

help in a case of characters being very close to each other.

To restrict set of recognized characters use inCharRange parameter.

9. Troubleshooting

Below you will find a list of most common problems.

1. Network overfitting

A situation when a network loses its ability to generalize over available problems and focuses only on test data.

Symptoms: during training, the validation graph stops at one level and training graph continues to rise. Defects on training images are marked very

precisely, but defects on new images are marked poorly.

A graph characteristic for network overfitting.

Causes:

The number of test samples is too small.

Training time is too long.

Possible solutions:

Provide more real samples of different objects.

Use more augmentations.

Reduce Network Depth.

2. Susceptibility to changes in lighting conditions

Symptoms: network is not able to process images properly when even minor changes in lighting occur.

Causes:

Original image. Visualized results of the read characters.

https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_ReadCharacters_Deploy.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_ReadCharacters.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_ReadCharacters.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_ReadCharacters.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_ReadCharacters.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_ReadCharacters.html
https://docs.fab-image.com/5.3/studio/filters/DeepLearning/DL_ReadCharacters.html

Samples with variable lighting were not provided.

Solution:

Provide more samples with variable lighting.

Enable "Luminance" option for automatic lighting augmentation.

3. No progress in network training

Symptoms ― even though the training time is optimal, there is no visible training progress.

Training progress with contradictory samples.

Causes:

The number of samples is too small or the samples are not variable enough.

Image contrast is too small.

The chosen network architecture is too small.

There is contradiction in defect masks.

Solution:

Modify lighting to expose defects.

Remove contradictions in defect masks.

Tip: Remember to mark all defects of a given type on the input images or remove images with unmarked defects. Marking only a part of defects of a

given type may negatively influence the network learning process.

4. Training/sample evaluation is very slow

Symptoms ― training or sample evaluation takes a lot of time.

Causes:

Resolution of the provided input images is too high.

Fragments that cannot possibly contain defects are also analyzed.

Solution:

Enable "Downsample" option to reduce the image resolution.

Limit ROI for sample evaluation.

Use lower Network Depth

See Also

Deep Learning Service Configuration - installation and configuration of Deep Learning service,

Creating Deep Learning Model - how to use Deep Learning Editor.

This article is valid for version 5.3.4

https://docs.fab-image.com/5.3/studio/appendices/DeepLearningInstallation.html
https://docs.fab-image.com/5.3/studio/user_interface/DeepLearningTraining.html

	FabImage Studio 5.3
	Machine Vision Guide

	Image Processing
	Introduction
	Regions of Interest
	Image Boundary Processing
	Toolset
	Image Combinators
	Image Smoothing
	Image Morphology
	Gradient Analysis
	Spatial Transforms
	Spatial Transform Maps
	Image Thresholding
	Image Pixel Analysis
	Image Features

	Blob Analysis
	Introduction
	Concept
	Examples
	Rubber Band
	Mounts

	Extraction
	Thresholding
	Classic Thresholding
	Dynamic Thresholding
	Color-based Thresholding

	Refinement
	Region Morphology
	Dilation and Erosion
	Closing and Opening

	Other Refinement Methods

	Analysis
	Region Features
	Numeric Features
	Non-numeric Features

	Case Studies
	Capsules
	FindRegion Routine
	Complete Solution

	1D Edge Detection
	Introduction
	Concept
	Example

	Filter Toolset
	Parameters
	Profile Extraction
	Edge Extraction
	Edge Transition
	Stripe Intensity

	Case Study: Blades

	1D Edge Detection – Subpixel Precision
	Introduction
	Example: Parabola Fitting
	Advanced: Methods Available in FabImage

	Shape Fitting
	Introduction
	Concept
	Toolset
	Parameters

	Template Matching
	Introduction
	Concept
	Naive Template Matching
	Image Correlation
	Cross-Correlation
	Normalized Cross-Correlation

	Template Correlation Image
	Identification of Matches
	Summary

	Grayscale-based Matching, Edge-based Matching
	Image Pyramid
	Pyramid Processing
	Grayscale-based Matching
	Edge-based Matching

	Filter Toolset
	Available Filters
	Advanced Application Schema
	Schema 1: Model Creation in a Separate Program
	Schema 2: Dynamic Model Creation

	Model Creation
	Height of the Pyramid
	Angle Range
	Scale Range
	Edge Detection Settings (only Edge-based Matching)

	Matching

	Tips and Best Practices
	How to Select a Method?
	How to even further upgrade the results of Edge-based Matching?

	Using Local Coordinate Systems
	Introduction
	Creating a Local Coordinate System
	Using a Local Coordinate System
	Example 1: Alignment from Template Matching
	Example 2: Alignment from Blob Analysis

	Manual Alignment
	Not Mixing Local Coordinate Systems

	Optical Character Recognition
	Introduction
	Concept

	Using high level Optical Character Recognition filters
	Details on Optical Character Recognition technique
	Reading text from images
	Getting text location
	Extracting text from the background
	Segmenting text
	Using prepared OCR models
	Character recognition
	Interpreting results
	Verifying results

	Preparation of the OCR models
	Preparation of the training data set
	Selection of normalization size and character features
	Training of the OCR model
	Saving the training results

	Example: Reading numbers from masks
	Training the classifier
	Reading data from images

	Camera Calibration and World Coordinates
	Camera Calibration
	World Plane - Measurements and Rectification
	Extraction of Calibration Grids
	Application Guide – Image Stitching

	Golden Template
	How To Use
	Example

	Deep Learning
	1. Introduction
	Overview of Deep Learning Tools
	Basic Terminology
	Deep neural networks
	Depth of a neural network
	Training process

	Stopping Conditions
	Preprocessing
	Augmentation

	2. Anomaly Detection
	Parameters
	Metrics
	Model Usage

	3. Feature Detection (segmentation)
	Training Data
	Multiple classes of features

	Patch Size
	Model Usage

	4. Object Classification
	The Principle of Operation
	Training Parameters
	Model Usage

	5. Instance Segmentation
	Training Data
	Training Parameters
	Model Usage

	6. Point Location
	Training Data
	Feature Size
	Model Usage

	7. Locating objects
	Training Data
	Model Usage

	8. Reading Characters
	Model Usage

	9. Troubleshooting
	1. Network overfitting
	2. Susceptibility to changes in lighting conditions
	3. No progress in network training
	4. Training/sample evaluation is very slow

	See Also

